Some recent developments in auxiliary-field quantum Monte Carlo for real materials

The auxiliary-field quantum Monte Carlo (AFQMC) method is a general numerical method for correlated many-electron systems, which is being increasingly applied in lattice models, atoms, molecules, and solids. Here, we introduce the theory and algorithm of the method specialized for real materials and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-01, Vol.154 (2), p.024107-024107
Hauptverfasser: Shi, Hao, Zhang, Shiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 024107
container_issue 2
container_start_page 024107
container_title The Journal of chemical physics
container_volume 154
creator Shi, Hao
Zhang, Shiwei
description The auxiliary-field quantum Monte Carlo (AFQMC) method is a general numerical method for correlated many-electron systems, which is being increasingly applied in lattice models, atoms, molecules, and solids. Here, we introduce the theory and algorithm of the method specialized for real materials and present several recent developments. We give a systematic exposition of the key steps of AFQMC, closely tracking the framework of a modern software library we are developing. The building of a Monte Carlo Hamiltonian, projecting to the ground state, sampling two-body operators, phaseless approximation, and measuring ground state properties are discussed in detail. An advanced implementation for multi-determinant trial wave functions is described, which dramatically speeds up the algorithm and reduces the memory cost. We propose a self-consistent constraint for real materials, and discuss two flavors for its realization, either by coupling the AFQMC calculation to an effective independent-electron calculation or via the natural orbitals of the computed one-body density matrix.
doi_str_mv 10.1063/5.0031024
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2478587943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478587943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-88fe0a74ec007146abf4281ae92c9fddc1390a4fa18c2c0f0fd15a2040be34ef3</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgis7phX9AAt6oUD1p0za5lOEXTAQ_rkuWnkCkbbakHfrvzdhUUPDq5OLJm5yXkCMGFwyK7DK_AMgYpHyLjBgImZSFhG0yAkhZIgso9sh-CG8AwMqU75K9LOM8lyBG5OnZtUg9aux6WuMSGzdv4zlQ21E1vNvGKv-RGItNTReD6vqhpQ-u65FOlG8cNc7H66qhrerRW9WEA7Jj4sDDzRyT15vrl8ldMn28vZ9cTRPNuewTIQyCKjlqgJLxQs0MTwVTKFMtTV1rlklQ3CgmdKrBgKlZrlLgMMOMo8nG5HSdO_duMWDoq9YGjU2jOnRDqFJeilyUkmeRnvyib27wXfzdSpUCJIc8qrO10t6F4NFUc2_buH7FoFoVXeXVpuhojzeJw6zF-lt-NRvB-RoEbXvVW9d9m6XzP0nVvDb_4b9PfwLiNJOr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477809405</pqid></control><display><type>article</type><title>Some recent developments in auxiliary-field quantum Monte Carlo for real materials</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shi, Hao ; Zhang, Shiwei</creator><creatorcontrib>Shi, Hao ; Zhang, Shiwei</creatorcontrib><description>The auxiliary-field quantum Monte Carlo (AFQMC) method is a general numerical method for correlated many-electron systems, which is being increasingly applied in lattice models, atoms, molecules, and solids. Here, we introduce the theory and algorithm of the method specialized for real materials and present several recent developments. We give a systematic exposition of the key steps of AFQMC, closely tracking the framework of a modern software library we are developing. The building of a Monte Carlo Hamiltonian, projecting to the ground state, sampling two-body operators, phaseless approximation, and measuring ground state properties are discussed in detail. An advanced implementation for multi-determinant trial wave functions is described, which dramatically speeds up the algorithm and reduces the memory cost. We propose a self-consistent constraint for real materials, and discuss two flavors for its realization, either by coupling the AFQMC calculation to an effective independent-electron calculation or via the natural orbitals of the computed one-body density matrix.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0031024</identifier><identifier>PMID: 33445908</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Coupling (molecular) ; Ground state ; Mathematical analysis ; Numerical methods ; Operators (mathematics) ; Wave functions</subject><ispartof>The Journal of chemical physics, 2021-01, Vol.154 (2), p.024107-024107</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-88fe0a74ec007146abf4281ae92c9fddc1390a4fa18c2c0f0fd15a2040be34ef3</citedby><cites>FETCH-LOGICAL-c449t-88fe0a74ec007146abf4281ae92c9fddc1390a4fa18c2c0f0fd15a2040be34ef3</cites><orcidid>0000-0002-7468-4754 ; 0000-0001-9635-170X ; 000000019635170X ; 0000000274684754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0031024$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33445908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Hao</creatorcontrib><creatorcontrib>Zhang, Shiwei</creatorcontrib><title>Some recent developments in auxiliary-field quantum Monte Carlo for real materials</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The auxiliary-field quantum Monte Carlo (AFQMC) method is a general numerical method for correlated many-electron systems, which is being increasingly applied in lattice models, atoms, molecules, and solids. Here, we introduce the theory and algorithm of the method specialized for real materials and present several recent developments. We give a systematic exposition of the key steps of AFQMC, closely tracking the framework of a modern software library we are developing. The building of a Monte Carlo Hamiltonian, projecting to the ground state, sampling two-body operators, phaseless approximation, and measuring ground state properties are discussed in detail. An advanced implementation for multi-determinant trial wave functions is described, which dramatically speeds up the algorithm and reduces the memory cost. We propose a self-consistent constraint for real materials, and discuss two flavors for its realization, either by coupling the AFQMC calculation to an effective independent-electron calculation or via the natural orbitals of the computed one-body density matrix.</description><subject>Algorithms</subject><subject>Coupling (molecular)</subject><subject>Ground state</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>Operators (mathematics)</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgis7phX9AAt6oUD1p0za5lOEXTAQ_rkuWnkCkbbakHfrvzdhUUPDq5OLJm5yXkCMGFwyK7DK_AMgYpHyLjBgImZSFhG0yAkhZIgso9sh-CG8AwMqU75K9LOM8lyBG5OnZtUg9aux6WuMSGzdv4zlQ21E1vNvGKv-RGItNTReD6vqhpQ-u65FOlG8cNc7H66qhrerRW9WEA7Jj4sDDzRyT15vrl8ldMn28vZ9cTRPNuewTIQyCKjlqgJLxQs0MTwVTKFMtTV1rlklQ3CgmdKrBgKlZrlLgMMOMo8nG5HSdO_duMWDoq9YGjU2jOnRDqFJeilyUkmeRnvyib27wXfzdSpUCJIc8qrO10t6F4NFUc2_buH7FoFoVXeXVpuhojzeJw6zF-lt-NRvB-RoEbXvVW9d9m6XzP0nVvDb_4b9PfwLiNJOr</recordid><startdate>20210114</startdate><enddate>20210114</enddate><creator>Shi, Hao</creator><creator>Zhang, Shiwei</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7468-4754</orcidid><orcidid>https://orcid.org/0000-0001-9635-170X</orcidid><orcidid>https://orcid.org/000000019635170X</orcidid><orcidid>https://orcid.org/0000000274684754</orcidid></search><sort><creationdate>20210114</creationdate><title>Some recent developments in auxiliary-field quantum Monte Carlo for real materials</title><author>Shi, Hao ; Zhang, Shiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-88fe0a74ec007146abf4281ae92c9fddc1390a4fa18c2c0f0fd15a2040be34ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Coupling (molecular)</topic><topic>Ground state</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>Operators (mathematics)</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Hao</creatorcontrib><creatorcontrib>Zhang, Shiwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Hao</au><au>Zhang, Shiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some recent developments in auxiliary-field quantum Monte Carlo for real materials</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2021-01-14</date><risdate>2021</risdate><volume>154</volume><issue>2</issue><spage>024107</spage><epage>024107</epage><pages>024107-024107</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The auxiliary-field quantum Monte Carlo (AFQMC) method is a general numerical method for correlated many-electron systems, which is being increasingly applied in lattice models, atoms, molecules, and solids. Here, we introduce the theory and algorithm of the method specialized for real materials and present several recent developments. We give a systematic exposition of the key steps of AFQMC, closely tracking the framework of a modern software library we are developing. The building of a Monte Carlo Hamiltonian, projecting to the ground state, sampling two-body operators, phaseless approximation, and measuring ground state properties are discussed in detail. An advanced implementation for multi-determinant trial wave functions is described, which dramatically speeds up the algorithm and reduces the memory cost. We propose a self-consistent constraint for real materials, and discuss two flavors for its realization, either by coupling the AFQMC calculation to an effective independent-electron calculation or via the natural orbitals of the computed one-body density matrix.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33445908</pmid><doi>10.1063/5.0031024</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7468-4754</orcidid><orcidid>https://orcid.org/0000-0001-9635-170X</orcidid><orcidid>https://orcid.org/000000019635170X</orcidid><orcidid>https://orcid.org/0000000274684754</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-01, Vol.154 (2), p.024107-024107
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2478587943
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Coupling (molecular)
Ground state
Mathematical analysis
Numerical methods
Operators (mathematics)
Wave functions
title Some recent developments in auxiliary-field quantum Monte Carlo for real materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20recent%20developments%20in%20auxiliary-field%20quantum%20Monte%20Carlo%20for%20real%20materials&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Shi,%20Hao&rft.date=2021-01-14&rft.volume=154&rft.issue=2&rft.spage=024107&rft.epage=024107&rft.pages=024107-024107&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0031024&rft_dat=%3Cproquest_pubme%3E2478587943%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477809405&rft_id=info:pmid/33445908&rfr_iscdi=true