Some recent developments in auxiliary-field quantum Monte Carlo for real materials
The auxiliary-field quantum Monte Carlo (AFQMC) method is a general numerical method for correlated many-electron systems, which is being increasingly applied in lattice models, atoms, molecules, and solids. Here, we introduce the theory and algorithm of the method specialized for real materials and...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-01, Vol.154 (2), p.024107-024107 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 024107 |
---|---|
container_issue | 2 |
container_start_page | 024107 |
container_title | The Journal of chemical physics |
container_volume | 154 |
creator | Shi, Hao Zhang, Shiwei |
description | The auxiliary-field quantum Monte Carlo (AFQMC) method is a general numerical method for correlated many-electron systems, which is being increasingly applied in lattice models, atoms, molecules, and solids. Here, we introduce the theory and algorithm of the method specialized for real materials and present several recent developments. We give a systematic exposition of the key steps of AFQMC, closely tracking the framework of a modern software library we are developing. The building of a Monte Carlo Hamiltonian, projecting to the ground state, sampling two-body operators, phaseless approximation, and measuring ground state properties are discussed in detail. An advanced implementation for multi-determinant trial wave functions is described, which dramatically speeds up the algorithm and reduces the memory cost. We propose a self-consistent constraint for real materials, and discuss two flavors for its realization, either by coupling the AFQMC calculation to an effective independent-electron calculation or via the natural orbitals of the computed one-body density matrix. |
doi_str_mv | 10.1063/5.0031024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2478587943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478587943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-88fe0a74ec007146abf4281ae92c9fddc1390a4fa18c2c0f0fd15a2040be34ef3</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgis7phX9AAt6oUD1p0za5lOEXTAQ_rkuWnkCkbbakHfrvzdhUUPDq5OLJm5yXkCMGFwyK7DK_AMgYpHyLjBgImZSFhG0yAkhZIgso9sh-CG8AwMqU75K9LOM8lyBG5OnZtUg9aux6WuMSGzdv4zlQ21E1vNvGKv-RGItNTReD6vqhpQ-u65FOlG8cNc7H66qhrerRW9WEA7Jj4sDDzRyT15vrl8ldMn28vZ9cTRPNuewTIQyCKjlqgJLxQs0MTwVTKFMtTV1rlklQ3CgmdKrBgKlZrlLgMMOMo8nG5HSdO_duMWDoq9YGjU2jOnRDqFJeilyUkmeRnvyib27wXfzdSpUCJIc8qrO10t6F4NFUc2_buH7FoFoVXeXVpuhojzeJw6zF-lt-NRvB-RoEbXvVW9d9m6XzP0nVvDb_4b9PfwLiNJOr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477809405</pqid></control><display><type>article</type><title>Some recent developments in auxiliary-field quantum Monte Carlo for real materials</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shi, Hao ; Zhang, Shiwei</creator><creatorcontrib>Shi, Hao ; Zhang, Shiwei</creatorcontrib><description>The auxiliary-field quantum Monte Carlo (AFQMC) method is a general numerical method for correlated many-electron systems, which is being increasingly applied in lattice models, atoms, molecules, and solids. Here, we introduce the theory and algorithm of the method specialized for real materials and present several recent developments. We give a systematic exposition of the key steps of AFQMC, closely tracking the framework of a modern software library we are developing. The building of a Monte Carlo Hamiltonian, projecting to the ground state, sampling two-body operators, phaseless approximation, and measuring ground state properties are discussed in detail. An advanced implementation for multi-determinant trial wave functions is described, which dramatically speeds up the algorithm and reduces the memory cost. We propose a self-consistent constraint for real materials, and discuss two flavors for its realization, either by coupling the AFQMC calculation to an effective independent-electron calculation or via the natural orbitals of the computed one-body density matrix.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0031024</identifier><identifier>PMID: 33445908</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Coupling (molecular) ; Ground state ; Mathematical analysis ; Numerical methods ; Operators (mathematics) ; Wave functions</subject><ispartof>The Journal of chemical physics, 2021-01, Vol.154 (2), p.024107-024107</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-88fe0a74ec007146abf4281ae92c9fddc1390a4fa18c2c0f0fd15a2040be34ef3</citedby><cites>FETCH-LOGICAL-c449t-88fe0a74ec007146abf4281ae92c9fddc1390a4fa18c2c0f0fd15a2040be34ef3</cites><orcidid>0000-0002-7468-4754 ; 0000-0001-9635-170X ; 000000019635170X ; 0000000274684754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0031024$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33445908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Hao</creatorcontrib><creatorcontrib>Zhang, Shiwei</creatorcontrib><title>Some recent developments in auxiliary-field quantum Monte Carlo for real materials</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The auxiliary-field quantum Monte Carlo (AFQMC) method is a general numerical method for correlated many-electron systems, which is being increasingly applied in lattice models, atoms, molecules, and solids. Here, we introduce the theory and algorithm of the method specialized for real materials and present several recent developments. We give a systematic exposition of the key steps of AFQMC, closely tracking the framework of a modern software library we are developing. The building of a Monte Carlo Hamiltonian, projecting to the ground state, sampling two-body operators, phaseless approximation, and measuring ground state properties are discussed in detail. An advanced implementation for multi-determinant trial wave functions is described, which dramatically speeds up the algorithm and reduces the memory cost. We propose a self-consistent constraint for real materials, and discuss two flavors for its realization, either by coupling the AFQMC calculation to an effective independent-electron calculation or via the natural orbitals of the computed one-body density matrix.</description><subject>Algorithms</subject><subject>Coupling (molecular)</subject><subject>Ground state</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>Operators (mathematics)</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90F1LwzAUBuAgis7phX9AAt6oUD1p0za5lOEXTAQ_rkuWnkCkbbakHfrvzdhUUPDq5OLJm5yXkCMGFwyK7DK_AMgYpHyLjBgImZSFhG0yAkhZIgso9sh-CG8AwMqU75K9LOM8lyBG5OnZtUg9aux6WuMSGzdv4zlQ21E1vNvGKv-RGItNTReD6vqhpQ-u65FOlG8cNc7H66qhrerRW9WEA7Jj4sDDzRyT15vrl8ldMn28vZ9cTRPNuewTIQyCKjlqgJLxQs0MTwVTKFMtTV1rlklQ3CgmdKrBgKlZrlLgMMOMo8nG5HSdO_duMWDoq9YGjU2jOnRDqFJeilyUkmeRnvyib27wXfzdSpUCJIc8qrO10t6F4NFUc2_buH7FoFoVXeXVpuhojzeJw6zF-lt-NRvB-RoEbXvVW9d9m6XzP0nVvDb_4b9PfwLiNJOr</recordid><startdate>20210114</startdate><enddate>20210114</enddate><creator>Shi, Hao</creator><creator>Zhang, Shiwei</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7468-4754</orcidid><orcidid>https://orcid.org/0000-0001-9635-170X</orcidid><orcidid>https://orcid.org/000000019635170X</orcidid><orcidid>https://orcid.org/0000000274684754</orcidid></search><sort><creationdate>20210114</creationdate><title>Some recent developments in auxiliary-field quantum Monte Carlo for real materials</title><author>Shi, Hao ; Zhang, Shiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-88fe0a74ec007146abf4281ae92c9fddc1390a4fa18c2c0f0fd15a2040be34ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Coupling (molecular)</topic><topic>Ground state</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>Operators (mathematics)</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Hao</creatorcontrib><creatorcontrib>Zhang, Shiwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Hao</au><au>Zhang, Shiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some recent developments in auxiliary-field quantum Monte Carlo for real materials</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2021-01-14</date><risdate>2021</risdate><volume>154</volume><issue>2</issue><spage>024107</spage><epage>024107</epage><pages>024107-024107</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The auxiliary-field quantum Monte Carlo (AFQMC) method is a general numerical method for correlated many-electron systems, which is being increasingly applied in lattice models, atoms, molecules, and solids. Here, we introduce the theory and algorithm of the method specialized for real materials and present several recent developments. We give a systematic exposition of the key steps of AFQMC, closely tracking the framework of a modern software library we are developing. The building of a Monte Carlo Hamiltonian, projecting to the ground state, sampling two-body operators, phaseless approximation, and measuring ground state properties are discussed in detail. An advanced implementation for multi-determinant trial wave functions is described, which dramatically speeds up the algorithm and reduces the memory cost. We propose a self-consistent constraint for real materials, and discuss two flavors for its realization, either by coupling the AFQMC calculation to an effective independent-electron calculation or via the natural orbitals of the computed one-body density matrix.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33445908</pmid><doi>10.1063/5.0031024</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7468-4754</orcidid><orcidid>https://orcid.org/0000-0001-9635-170X</orcidid><orcidid>https://orcid.org/000000019635170X</orcidid><orcidid>https://orcid.org/0000000274684754</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-01, Vol.154 (2), p.024107-024107 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2478587943 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algorithms Coupling (molecular) Ground state Mathematical analysis Numerical methods Operators (mathematics) Wave functions |
title | Some recent developments in auxiliary-field quantum Monte Carlo for real materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20recent%20developments%20in%20auxiliary-field%20quantum%20Monte%20Carlo%20for%20real%20materials&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Shi,%20Hao&rft.date=2021-01-14&rft.volume=154&rft.issue=2&rft.spage=024107&rft.epage=024107&rft.pages=024107-024107&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0031024&rft_dat=%3Cproquest_pubme%3E2478587943%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477809405&rft_id=info:pmid/33445908&rfr_iscdi=true |