Biodegradable Zn−3Mg−0.7Mg2Si composite fabricated by high-pressure solidification for bone implant applications

Zinc (Zn)-based alloys have been considered potential biodegradable materials for medical applications due to their good biodegradability and biocompatibility. However, the insufficient mechanical properties of pure Zn do not meet the requirements of biodegradable implants. In this study, we have de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2021-03, Vol.123, p.407-417
Hauptverfasser: Tong, Xian, Cai, Wenhao, Lin, Jixing, Wang, Kun, Jin, Lufan, Shi, Zimu, Zhang, Dechuang, Lin, Jianguo, Li, Yuncang, Dargusch, Matthew, Wen, Cuie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 417
container_issue
container_start_page 407
container_title Acta biomaterialia
container_volume 123
creator Tong, Xian
Cai, Wenhao
Lin, Jixing
Wang, Kun
Jin, Lufan
Shi, Zimu
Zhang, Dechuang
Lin, Jianguo
Li, Yuncang
Dargusch, Matthew
Wen, Cuie
description Zinc (Zn)-based alloys have been considered potential biodegradable materials for medical applications due to their good biodegradability and biocompatibility. However, the insufficient mechanical properties of pure Zn do not meet the requirements of biodegradable implants. In this study, we have developed a biodegradable Zn−3Mg−0.7Mg2Si composite fabricated by high-pressure solidification. Microstructural characterization revealed that the high-pressure solidified (HPS) composite exhibited uniformly distributed fine MgZn2 granules in an α-Zn matrix. Comprehensive tests indicated that the HPS composite exhibited exceptionally high compression properties including a compressive yield strength of 406.2 MPa, an ultimate compressive strength of 1181.2 MPa, and plastic deformation up to 60% strain without cracking or fracturing. Potentiodynamic polarization tests revealed that the HPS composite showed a corrosion potential of −0.930 V, a corrosion current density of 3.5 μA/cm2, and a corrosion rate of 46.2 μm/y. Immersion tests revealed that the degradation rate of the HPS composite after immersion in Hanks’ solution for 1 month and 3 months was 42.8 μm/y and 37.8 μm/y, respectively. Furthermore, an extract of the HPS composite exhibited good cytocompatibility compared with as-cast (AC) pure Zn and an AC composite at a concentration of ≤25%. These results suggest that the HPS Zn−3Mg−0.7Mg2Si composite can be anticipated as a promising biodegradable material for orthopedic applications. [Display omitted]
doi_str_mv 10.1016/j.actbio.2020.12.059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2478585144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706121000209</els_id><sourcerecordid>2504813680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-22c4f88efdf961e3758be93c1b43d367f7109c41055b03e4d6c96b5b62b385803</originalsourceid><addsrcrecordid>eNp9kb1uFDEQx1eISITAG1BYoqHZjb_tbZAgCglSIgqgobH8Mb74tLde7D2kvAF1HpEniY9LRUEzM5r5zV8z-nfdG4IHgok83w7Wry7lgWLaWnTAYnzWnRKtdK-E1M9brTjtFZbkRfey1i3GTBOqT7v1Y8oBNsUG6yZAP-Y_vx_Y7aZFPKjbDf2akM-7Jde0AorWleTtCgG5e3SXNnf9UqDWfQFU85RCiodxyjOKuSCXZ0Bpt0x2XpFdlulpWF91J9FOFV4_5bPu-6fLbxfX_c2Xq88XH256z6Rae0o9j1pDDHGUBJgS2sHIPHGchUZERfDoOcFCOMyAB-lH6YST1DEtNGZn3buj7lLyzz3U1exS9TC1gyDvq6FcNU4Qzhv69h90m_dlbtcZKjDXhMm_gvxI-ZJrLRDNUtLOlntDsDlYYbbmaIU5WGEINc2Ktvb-uAbt2V8Jiqk-wewhpAJ-NSGn_ws8Aua6leA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504813680</pqid></control><display><type>article</type><title>Biodegradable Zn−3Mg−0.7Mg2Si composite fabricated by high-pressure solidification for bone implant applications</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tong, Xian ; Cai, Wenhao ; Lin, Jixing ; Wang, Kun ; Jin, Lufan ; Shi, Zimu ; Zhang, Dechuang ; Lin, Jianguo ; Li, Yuncang ; Dargusch, Matthew ; Wen, Cuie</creator><creatorcontrib>Tong, Xian ; Cai, Wenhao ; Lin, Jixing ; Wang, Kun ; Jin, Lufan ; Shi, Zimu ; Zhang, Dechuang ; Lin, Jianguo ; Li, Yuncang ; Dargusch, Matthew ; Wen, Cuie</creatorcontrib><description>Zinc (Zn)-based alloys have been considered potential biodegradable materials for medical applications due to their good biodegradability and biocompatibility. However, the insufficient mechanical properties of pure Zn do not meet the requirements of biodegradable implants. In this study, we have developed a biodegradable Zn−3Mg−0.7Mg2Si composite fabricated by high-pressure solidification. Microstructural characterization revealed that the high-pressure solidified (HPS) composite exhibited uniformly distributed fine MgZn2 granules in an α-Zn matrix. Comprehensive tests indicated that the HPS composite exhibited exceptionally high compression properties including a compressive yield strength of 406.2 MPa, an ultimate compressive strength of 1181.2 MPa, and plastic deformation up to 60% strain without cracking or fracturing. Potentiodynamic polarization tests revealed that the HPS composite showed a corrosion potential of −0.930 V, a corrosion current density of 3.5 μA/cm2, and a corrosion rate of 46.2 μm/y. Immersion tests revealed that the degradation rate of the HPS composite after immersion in Hanks’ solution for 1 month and 3 months was 42.8 μm/y and 37.8 μm/y, respectively. Furthermore, an extract of the HPS composite exhibited good cytocompatibility compared with as-cast (AC) pure Zn and an AC composite at a concentration of ≤25%. These results suggest that the HPS Zn−3Mg−0.7Mg2Si composite can be anticipated as a promising biodegradable material for orthopedic applications. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.12.059</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biocompatibility ; Biodegradability ; Biodegradable materials ; Biodegradable metal ; Biodegradation ; Compression ; Compression tests ; Compressive properties ; Compressive strength ; Corrosion ; Corrosion currents ; Corrosion potential ; Corrosion rate ; Cracking (fracturing) ; Friction and wear ; High-pressure solidification ; Immersion ; Immersion tests (corrosion) ; In vitro biocompatibility ; Mechanical properties ; Medical materials ; Orthopedics ; Plastic deformation ; Pressure ; Solidification ; Stress concentration ; Surgical implants ; Transplants &amp; implants ; Zinc ; Zn-based composite</subject><ispartof>Acta biomaterialia, 2021-03, Vol.123, p.407-417</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Mar 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-22c4f88efdf961e3758be93c1b43d367f7109c41055b03e4d6c96b5b62b385803</citedby><cites>FETCH-LOGICAL-c367t-22c4f88efdf961e3758be93c1b43d367f7109c41055b03e4d6c96b5b62b385803</cites><orcidid>0000-0002-3626-3238 ; 0000-0001-8008-3536 ; 0000-0003-4336-5811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2020.12.059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Tong, Xian</creatorcontrib><creatorcontrib>Cai, Wenhao</creatorcontrib><creatorcontrib>Lin, Jixing</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Jin, Lufan</creatorcontrib><creatorcontrib>Shi, Zimu</creatorcontrib><creatorcontrib>Zhang, Dechuang</creatorcontrib><creatorcontrib>Lin, Jianguo</creatorcontrib><creatorcontrib>Li, Yuncang</creatorcontrib><creatorcontrib>Dargusch, Matthew</creatorcontrib><creatorcontrib>Wen, Cuie</creatorcontrib><title>Biodegradable Zn−3Mg−0.7Mg2Si composite fabricated by high-pressure solidification for bone implant applications</title><title>Acta biomaterialia</title><description>Zinc (Zn)-based alloys have been considered potential biodegradable materials for medical applications due to their good biodegradability and biocompatibility. However, the insufficient mechanical properties of pure Zn do not meet the requirements of biodegradable implants. In this study, we have developed a biodegradable Zn−3Mg−0.7Mg2Si composite fabricated by high-pressure solidification. Microstructural characterization revealed that the high-pressure solidified (HPS) composite exhibited uniformly distributed fine MgZn2 granules in an α-Zn matrix. Comprehensive tests indicated that the HPS composite exhibited exceptionally high compression properties including a compressive yield strength of 406.2 MPa, an ultimate compressive strength of 1181.2 MPa, and plastic deformation up to 60% strain without cracking or fracturing. Potentiodynamic polarization tests revealed that the HPS composite showed a corrosion potential of −0.930 V, a corrosion current density of 3.5 μA/cm2, and a corrosion rate of 46.2 μm/y. Immersion tests revealed that the degradation rate of the HPS composite after immersion in Hanks’ solution for 1 month and 3 months was 42.8 μm/y and 37.8 μm/y, respectively. Furthermore, an extract of the HPS composite exhibited good cytocompatibility compared with as-cast (AC) pure Zn and an AC composite at a concentration of ≤25%. These results suggest that the HPS Zn−3Mg−0.7Mg2Si composite can be anticipated as a promising biodegradable material for orthopedic applications. [Display omitted]</description><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradable materials</subject><subject>Biodegradable metal</subject><subject>Biodegradation</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Compressive properties</subject><subject>Compressive strength</subject><subject>Corrosion</subject><subject>Corrosion currents</subject><subject>Corrosion potential</subject><subject>Corrosion rate</subject><subject>Cracking (fracturing)</subject><subject>Friction and wear</subject><subject>High-pressure solidification</subject><subject>Immersion</subject><subject>Immersion tests (corrosion)</subject><subject>In vitro biocompatibility</subject><subject>Mechanical properties</subject><subject>Medical materials</subject><subject>Orthopedics</subject><subject>Plastic deformation</subject><subject>Pressure</subject><subject>Solidification</subject><subject>Stress concentration</subject><subject>Surgical implants</subject><subject>Transplants &amp; implants</subject><subject>Zinc</subject><subject>Zn-based composite</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kb1uFDEQx1eISITAG1BYoqHZjb_tbZAgCglSIgqgobH8Mb74tLde7D2kvAF1HpEniY9LRUEzM5r5zV8z-nfdG4IHgok83w7Wry7lgWLaWnTAYnzWnRKtdK-E1M9brTjtFZbkRfey1i3GTBOqT7v1Y8oBNsUG6yZAP-Y_vx_Y7aZFPKjbDf2akM-7Jde0AorWleTtCgG5e3SXNnf9UqDWfQFU85RCiodxyjOKuSCXZ0Bpt0x2XpFdlulpWF91J9FOFV4_5bPu-6fLbxfX_c2Xq88XH256z6Rae0o9j1pDDHGUBJgS2sHIPHGchUZERfDoOcFCOMyAB-lH6YST1DEtNGZn3buj7lLyzz3U1exS9TC1gyDvq6FcNU4Qzhv69h90m_dlbtcZKjDXhMm_gvxI-ZJrLRDNUtLOlntDsDlYYbbmaIU5WGEINc2Ktvb-uAbt2V8Jiqk-wewhpAJ-NSGn_ws8Aua6leA</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Tong, Xian</creator><creator>Cai, Wenhao</creator><creator>Lin, Jixing</creator><creator>Wang, Kun</creator><creator>Jin, Lufan</creator><creator>Shi, Zimu</creator><creator>Zhang, Dechuang</creator><creator>Lin, Jianguo</creator><creator>Li, Yuncang</creator><creator>Dargusch, Matthew</creator><creator>Wen, Cuie</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3626-3238</orcidid><orcidid>https://orcid.org/0000-0001-8008-3536</orcidid><orcidid>https://orcid.org/0000-0003-4336-5811</orcidid></search><sort><creationdate>20210315</creationdate><title>Biodegradable Zn−3Mg−0.7Mg2Si composite fabricated by high-pressure solidification for bone implant applications</title><author>Tong, Xian ; Cai, Wenhao ; Lin, Jixing ; Wang, Kun ; Jin, Lufan ; Shi, Zimu ; Zhang, Dechuang ; Lin, Jianguo ; Li, Yuncang ; Dargusch, Matthew ; Wen, Cuie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-22c4f88efdf961e3758be93c1b43d367f7109c41055b03e4d6c96b5b62b385803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradable materials</topic><topic>Biodegradable metal</topic><topic>Biodegradation</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Compressive properties</topic><topic>Compressive strength</topic><topic>Corrosion</topic><topic>Corrosion currents</topic><topic>Corrosion potential</topic><topic>Corrosion rate</topic><topic>Cracking (fracturing)</topic><topic>Friction and wear</topic><topic>High-pressure solidification</topic><topic>Immersion</topic><topic>Immersion tests (corrosion)</topic><topic>In vitro biocompatibility</topic><topic>Mechanical properties</topic><topic>Medical materials</topic><topic>Orthopedics</topic><topic>Plastic deformation</topic><topic>Pressure</topic><topic>Solidification</topic><topic>Stress concentration</topic><topic>Surgical implants</topic><topic>Transplants &amp; implants</topic><topic>Zinc</topic><topic>Zn-based composite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Xian</creatorcontrib><creatorcontrib>Cai, Wenhao</creatorcontrib><creatorcontrib>Lin, Jixing</creatorcontrib><creatorcontrib>Wang, Kun</creatorcontrib><creatorcontrib>Jin, Lufan</creatorcontrib><creatorcontrib>Shi, Zimu</creatorcontrib><creatorcontrib>Zhang, Dechuang</creatorcontrib><creatorcontrib>Lin, Jianguo</creatorcontrib><creatorcontrib>Li, Yuncang</creatorcontrib><creatorcontrib>Dargusch, Matthew</creatorcontrib><creatorcontrib>Wen, Cuie</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Xian</au><au>Cai, Wenhao</au><au>Lin, Jixing</au><au>Wang, Kun</au><au>Jin, Lufan</au><au>Shi, Zimu</au><au>Zhang, Dechuang</au><au>Lin, Jianguo</au><au>Li, Yuncang</au><au>Dargusch, Matthew</au><au>Wen, Cuie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradable Zn−3Mg−0.7Mg2Si composite fabricated by high-pressure solidification for bone implant applications</atitle><jtitle>Acta biomaterialia</jtitle><date>2021-03-15</date><risdate>2021</risdate><volume>123</volume><spage>407</spage><epage>417</epage><pages>407-417</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Zinc (Zn)-based alloys have been considered potential biodegradable materials for medical applications due to their good biodegradability and biocompatibility. However, the insufficient mechanical properties of pure Zn do not meet the requirements of biodegradable implants. In this study, we have developed a biodegradable Zn−3Mg−0.7Mg2Si composite fabricated by high-pressure solidification. Microstructural characterization revealed that the high-pressure solidified (HPS) composite exhibited uniformly distributed fine MgZn2 granules in an α-Zn matrix. Comprehensive tests indicated that the HPS composite exhibited exceptionally high compression properties including a compressive yield strength of 406.2 MPa, an ultimate compressive strength of 1181.2 MPa, and plastic deformation up to 60% strain without cracking or fracturing. Potentiodynamic polarization tests revealed that the HPS composite showed a corrosion potential of −0.930 V, a corrosion current density of 3.5 μA/cm2, and a corrosion rate of 46.2 μm/y. Immersion tests revealed that the degradation rate of the HPS composite after immersion in Hanks’ solution for 1 month and 3 months was 42.8 μm/y and 37.8 μm/y, respectively. Furthermore, an extract of the HPS composite exhibited good cytocompatibility compared with as-cast (AC) pure Zn and an AC composite at a concentration of ≤25%. These results suggest that the HPS Zn−3Mg−0.7Mg2Si composite can be anticipated as a promising biodegradable material for orthopedic applications. [Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actbio.2020.12.059</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3626-3238</orcidid><orcidid>https://orcid.org/0000-0001-8008-3536</orcidid><orcidid>https://orcid.org/0000-0003-4336-5811</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2021-03, Vol.123, p.407-417
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_2478585144
source ScienceDirect Journals (5 years ago - present)
subjects Biocompatibility
Biodegradability
Biodegradable materials
Biodegradable metal
Biodegradation
Compression
Compression tests
Compressive properties
Compressive strength
Corrosion
Corrosion currents
Corrosion potential
Corrosion rate
Cracking (fracturing)
Friction and wear
High-pressure solidification
Immersion
Immersion tests (corrosion)
In vitro biocompatibility
Mechanical properties
Medical materials
Orthopedics
Plastic deformation
Pressure
Solidification
Stress concentration
Surgical implants
Transplants & implants
Zinc
Zn-based composite
title Biodegradable Zn−3Mg−0.7Mg2Si composite fabricated by high-pressure solidification for bone implant applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradable%20Zn%E2%88%923Mg%E2%88%920.7Mg2Si%20composite%20fabricated%20by%20high-pressure%20solidification%20for%20bone%20implant%20applications&rft.jtitle=Acta%20biomaterialia&rft.au=Tong,%20Xian&rft.date=2021-03-15&rft.volume=123&rft.spage=407&rft.epage=417&rft.pages=407-417&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.12.059&rft_dat=%3Cproquest_cross%3E2504813680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504813680&rft_id=info:pmid/&rft_els_id=S1742706121000209&rfr_iscdi=true