A dynamical system for the IGF1-AKT signaling pathway in skeletal muscle adaptation
Physical activity produces a change in skeletal-muscle size by activating synthesis or degradation of protein, which are outcomes of stimulating the IGF1-AKT signaling pathway. In this work, we propose a mathematical model that predicts the variation in muscle size under different activity condition...
Gespeichert in:
Veröffentlicht in: | BioSystems 2021-04, Vol.202, p.104355-104355, Article 104355 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104355 |
---|---|
container_issue | |
container_start_page | 104355 |
container_title | BioSystems |
container_volume | 202 |
creator | Villota-Narvaez, Yesid Garzon-Alvarado, Diego A. Ramirez-Martinez, Angelica M. |
description | Physical activity produces a change in skeletal-muscle size by activating synthesis or degradation of protein, which are outcomes of stimulating the IGF1-AKT signaling pathway. In this work, we propose a mathematical model that predicts the variation in muscle size under different activity conditions. The IGF1-AKT pathway was modeled using its 4 main molecules as variables in a dynamical system. We checked the stability of the system; we defined exercise training as a function of intensity, duration, and frequency; and we tested the model under four scenarios: first, we considered the daily low-intensity activity that should not promote atrophy nor hypertrophy (steady state); second, we simulated the effects of physical therapy in spinal cord injury patients (atrophy); third, we simulated exercise training in healthy subjects (hypertrophy); and fourth, we considered the effects of suspending a training program in healthy subjects (recovery after hypertrophy). Results showed that: protein synthesis and degradation are inactive, thus the size of the muscle stays stable in the first scenario; the muscle decreases only 10% of its initial size after 84 days of therapy every two days in the second scenario; training frequency produces rapid hypertrophy (11% after 25 days) when training every day, to no hypertrophy when training every 5 days in the third scenario; and a reduction of 50% the gain of the training program in the fourth scenario. By comparing our results to experimental reports, we found a remarkable agreement; therefore, our model is suitable for the development of training and therapeutic protocols. |
doi_str_mv | 10.1016/j.biosystems.2021.104355 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2478583768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303264721000137</els_id><sourcerecordid>2478583768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-18354f49bb2178ff37b1cf19c586ac800b297343728ca8510f84ef8fd627f2233</originalsourceid><addsrcrecordid>eNqFkMlOwzAQhi0EgrK8AvKRS4q3xO6xIFoQSBwoZ8txxuCSjdgB5e1JFZYjcxlp9C-aDyFMyZwSml1u57lvwhAiVGHOCKPjWfA03UMzqiRLFGdiH80IJzxhmZBH6DiELRknVfQQHXEuUs6pmqGnJS6G2lTemhJPidg1HY6vgO_WK5os7zc4-JfalL5-wa2Jr59mwL7G4Q1KiKOr6oMtAZvCtNFE39Sn6MCZMsDZ9z5Bz6ubzfVt8vC4vrtePiSWSxETqngqnFjkOaNSOcdlTq2jC5uqzFhFSM4WkgsumbJGpZQ4JcApV2RMOsY4P0EXU27bNe89hKgrHyyUpamh6YNmQqpUcZmpUaomqe2aEDpwuu18ZbpBU6J3SPVW_yHVO6R6Qjpaz79b-ryC4tf4w3AUXE0CGH_98NDpYD3UFgrfgY26aPz_LV_-aovs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478583768</pqid></control><display><type>article</type><title>A dynamical system for the IGF1-AKT signaling pathway in skeletal muscle adaptation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Villota-Narvaez, Yesid ; Garzon-Alvarado, Diego A. ; Ramirez-Martinez, Angelica M.</creator><creatorcontrib>Villota-Narvaez, Yesid ; Garzon-Alvarado, Diego A. ; Ramirez-Martinez, Angelica M.</creatorcontrib><description>Physical activity produces a change in skeletal-muscle size by activating synthesis or degradation of protein, which are outcomes of stimulating the IGF1-AKT signaling pathway. In this work, we propose a mathematical model that predicts the variation in muscle size under different activity conditions. The IGF1-AKT pathway was modeled using its 4 main molecules as variables in a dynamical system. We checked the stability of the system; we defined exercise training as a function of intensity, duration, and frequency; and we tested the model under four scenarios: first, we considered the daily low-intensity activity that should not promote atrophy nor hypertrophy (steady state); second, we simulated the effects of physical therapy in spinal cord injury patients (atrophy); third, we simulated exercise training in healthy subjects (hypertrophy); and fourth, we considered the effects of suspending a training program in healthy subjects (recovery after hypertrophy). Results showed that: protein synthesis and degradation are inactive, thus the size of the muscle stays stable in the first scenario; the muscle decreases only 10% of its initial size after 84 days of therapy every two days in the second scenario; training frequency produces rapid hypertrophy (11% after 25 days) when training every day, to no hypertrophy when training every 5 days in the third scenario; and a reduction of 50% the gain of the training program in the fourth scenario. By comparing our results to experimental reports, we found a remarkable agreement; therefore, our model is suitable for the development of training and therapeutic protocols.</description><identifier>ISSN: 0303-2647</identifier><identifier>EISSN: 1872-8324</identifier><identifier>DOI: 10.1016/j.biosystems.2021.104355</identifier><identifier>PMID: 33453318</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Biochemical modeling ; Biomechanics ; Cellular signaling pathways ; Dynamical systems ; Mechanobiology ; Muscle adaptation ; Population dynamics</subject><ispartof>BioSystems, 2021-04, Vol.202, p.104355-104355, Article 104355</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-18354f49bb2178ff37b1cf19c586ac800b297343728ca8510f84ef8fd627f2233</citedby><cites>FETCH-LOGICAL-c374t-18354f49bb2178ff37b1cf19c586ac800b297343728ca8510f84ef8fd627f2233</cites><orcidid>0000-0002-7120-7557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biosystems.2021.104355$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33453318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Villota-Narvaez, Yesid</creatorcontrib><creatorcontrib>Garzon-Alvarado, Diego A.</creatorcontrib><creatorcontrib>Ramirez-Martinez, Angelica M.</creatorcontrib><title>A dynamical system for the IGF1-AKT signaling pathway in skeletal muscle adaptation</title><title>BioSystems</title><addtitle>Biosystems</addtitle><description>Physical activity produces a change in skeletal-muscle size by activating synthesis or degradation of protein, which are outcomes of stimulating the IGF1-AKT signaling pathway. In this work, we propose a mathematical model that predicts the variation in muscle size under different activity conditions. The IGF1-AKT pathway was modeled using its 4 main molecules as variables in a dynamical system. We checked the stability of the system; we defined exercise training as a function of intensity, duration, and frequency; and we tested the model under four scenarios: first, we considered the daily low-intensity activity that should not promote atrophy nor hypertrophy (steady state); second, we simulated the effects of physical therapy in spinal cord injury patients (atrophy); third, we simulated exercise training in healthy subjects (hypertrophy); and fourth, we considered the effects of suspending a training program in healthy subjects (recovery after hypertrophy). Results showed that: protein synthesis and degradation are inactive, thus the size of the muscle stays stable in the first scenario; the muscle decreases only 10% of its initial size after 84 days of therapy every two days in the second scenario; training frequency produces rapid hypertrophy (11% after 25 days) when training every day, to no hypertrophy when training every 5 days in the third scenario; and a reduction of 50% the gain of the training program in the fourth scenario. By comparing our results to experimental reports, we found a remarkable agreement; therefore, our model is suitable for the development of training and therapeutic protocols.</description><subject>Biochemical modeling</subject><subject>Biomechanics</subject><subject>Cellular signaling pathways</subject><subject>Dynamical systems</subject><subject>Mechanobiology</subject><subject>Muscle adaptation</subject><subject>Population dynamics</subject><issn>0303-2647</issn><issn>1872-8324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOwzAQhi0EgrK8AvKRS4q3xO6xIFoQSBwoZ8txxuCSjdgB5e1JFZYjcxlp9C-aDyFMyZwSml1u57lvwhAiVGHOCKPjWfA03UMzqiRLFGdiH80IJzxhmZBH6DiELRknVfQQHXEuUs6pmqGnJS6G2lTemhJPidg1HY6vgO_WK5os7zc4-JfalL5-wa2Jr59mwL7G4Q1KiKOr6oMtAZvCtNFE39Sn6MCZMsDZ9z5Bz6ubzfVt8vC4vrtePiSWSxETqngqnFjkOaNSOcdlTq2jC5uqzFhFSM4WkgsumbJGpZQ4JcApV2RMOsY4P0EXU27bNe89hKgrHyyUpamh6YNmQqpUcZmpUaomqe2aEDpwuu18ZbpBU6J3SPVW_yHVO6R6Qjpaz79b-ryC4tf4w3AUXE0CGH_98NDpYD3UFgrfgY26aPz_LV_-aovs</recordid><startdate>202104</startdate><enddate>202104</enddate><creator>Villota-Narvaez, Yesid</creator><creator>Garzon-Alvarado, Diego A.</creator><creator>Ramirez-Martinez, Angelica M.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7120-7557</orcidid></search><sort><creationdate>202104</creationdate><title>A dynamical system for the IGF1-AKT signaling pathway in skeletal muscle adaptation</title><author>Villota-Narvaez, Yesid ; Garzon-Alvarado, Diego A. ; Ramirez-Martinez, Angelica M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-18354f49bb2178ff37b1cf19c586ac800b297343728ca8510f84ef8fd627f2233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemical modeling</topic><topic>Biomechanics</topic><topic>Cellular signaling pathways</topic><topic>Dynamical systems</topic><topic>Mechanobiology</topic><topic>Muscle adaptation</topic><topic>Population dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villota-Narvaez, Yesid</creatorcontrib><creatorcontrib>Garzon-Alvarado, Diego A.</creatorcontrib><creatorcontrib>Ramirez-Martinez, Angelica M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>BioSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villota-Narvaez, Yesid</au><au>Garzon-Alvarado, Diego A.</au><au>Ramirez-Martinez, Angelica M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dynamical system for the IGF1-AKT signaling pathway in skeletal muscle adaptation</atitle><jtitle>BioSystems</jtitle><addtitle>Biosystems</addtitle><date>2021-04</date><risdate>2021</risdate><volume>202</volume><spage>104355</spage><epage>104355</epage><pages>104355-104355</pages><artnum>104355</artnum><issn>0303-2647</issn><eissn>1872-8324</eissn><abstract>Physical activity produces a change in skeletal-muscle size by activating synthesis or degradation of protein, which are outcomes of stimulating the IGF1-AKT signaling pathway. In this work, we propose a mathematical model that predicts the variation in muscle size under different activity conditions. The IGF1-AKT pathway was modeled using its 4 main molecules as variables in a dynamical system. We checked the stability of the system; we defined exercise training as a function of intensity, duration, and frequency; and we tested the model under four scenarios: first, we considered the daily low-intensity activity that should not promote atrophy nor hypertrophy (steady state); second, we simulated the effects of physical therapy in spinal cord injury patients (atrophy); third, we simulated exercise training in healthy subjects (hypertrophy); and fourth, we considered the effects of suspending a training program in healthy subjects (recovery after hypertrophy). Results showed that: protein synthesis and degradation are inactive, thus the size of the muscle stays stable in the first scenario; the muscle decreases only 10% of its initial size after 84 days of therapy every two days in the second scenario; training frequency produces rapid hypertrophy (11% after 25 days) when training every day, to no hypertrophy when training every 5 days in the third scenario; and a reduction of 50% the gain of the training program in the fourth scenario. By comparing our results to experimental reports, we found a remarkable agreement; therefore, our model is suitable for the development of training and therapeutic protocols.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>33453318</pmid><doi>10.1016/j.biosystems.2021.104355</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7120-7557</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-2647 |
ispartof | BioSystems, 2021-04, Vol.202, p.104355-104355, Article 104355 |
issn | 0303-2647 1872-8324 |
language | eng |
recordid | cdi_proquest_miscellaneous_2478583768 |
source | Access via ScienceDirect (Elsevier) |
subjects | Biochemical modeling Biomechanics Cellular signaling pathways Dynamical systems Mechanobiology Muscle adaptation Population dynamics |
title | A dynamical system for the IGF1-AKT signaling pathway in skeletal muscle adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dynamical%20system%20for%20the%20IGF1-AKT%20signaling%20pathway%20in%20skeletal%20muscle%20adaptation&rft.jtitle=BioSystems&rft.au=Villota-Narvaez,%20Yesid&rft.date=2021-04&rft.volume=202&rft.spage=104355&rft.epage=104355&rft.pages=104355-104355&rft.artnum=104355&rft.issn=0303-2647&rft.eissn=1872-8324&rft_id=info:doi/10.1016/j.biosystems.2021.104355&rft_dat=%3Cproquest_cross%3E2478583768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478583768&rft_id=info:pmid/33453318&rft_els_id=S0303264721000137&rfr_iscdi=true |