Self-Limiting Growth of Single-Layer N‑Doped Graphene Encapsulating Nickel Nanoparticles for Efficient Hydrogen Production

Effective nonprecious metal catalysts are urgently needed for hydrogen evolution reaction (HER). The hybridization of N-doped graphene and a cost-effective metal is expected to be a promising approach for enhanced HER performance but faces bottlenecks in controllable fabrication. Herein, a silica me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-01, Vol.13 (3), p.4294-4304
Hauptverfasser: Zhang, Chunfei, Ju, Shenghong, Kang, Tong-Hyun, Park, Gisang, Lee, Byong-June, Miao, He, Wu, Yunwen, Yuan, Jinliang, Yu, Jong-Sung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4304
container_issue 3
container_start_page 4294
container_title ACS applied materials & interfaces
container_volume 13
creator Zhang, Chunfei
Ju, Shenghong
Kang, Tong-Hyun
Park, Gisang
Lee, Byong-June
Miao, He
Wu, Yunwen
Yuan, Jinliang
Yu, Jong-Sung
description Effective nonprecious metal catalysts are urgently needed for hydrogen evolution reaction (HER). The hybridization of N-doped graphene and a cost-effective metal is expected to be a promising approach for enhanced HER performance but faces bottlenecks in controllable fabrication. Herein, a silica medium-assisted method is developed for the high-efficient synthesis of single-layer N-doped graphene encapsulating nickel nanoparticles (Ni@SNG), where silica nanosheets molecule sieves tactfully assist the self-limiting growth of single-layer graphene over Ni nanoparticles by depressing the diffusion of gaseous carbon radical reactants. The Ni@SNG sample synthesized at 800 °C shows excellent activity for HER in alkaline medium with a low overpotential of 99.8 mV at 10 mA cm–2, which is close to that of the state-of-the-art Pt/C catalyst. Significantly, the Ni@SNG catalyst is also developed as a binder-free electrode in magnetic field, exhibiting much improved performance than the common Nafion binder-based electrode. Therefore, the magnetism adsorption technique will be a greatly promising approach to overcome the high electron resistance and poor adhesive stability of polymer binder-based electrodes in practical applications.
doi_str_mv 10.1021/acsami.0c17557
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2478034797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2478034797</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-3575c1013677cb7a2e0bc70675130edb31427813db62a9fd629613a355f467873</originalsourceid><addsrcrecordid>eNp1kMtq3DAUhkVJaC7tNsugZQl4oqs1XobJJFMYJoG0ayPLR4kSW3IlmzCQRV-hr5gnqacznV1W5xz4_h_Oh9AZJRNKGL3UJunWTYihSkr1CR3TQohsyiQ72O9CHKGTlJ4JyTkj8jM64lwIUnB-jN4eoLHZ0rWud_4R38bw2j_hYPHDeDaQLfUaIl69__5zHTqoR0B3T-ABz73RXRoa_S-3cuYFGrzSPnQ69s40kLANEc-tdcaB7_FiXcfwCB7fx1APpnfBf0GHVjcJvu7mKfp5M_8xW2TLu9vvs6tlpjknfcalkoYSynOlTKU0A1IZRXIlKSdQV5wKpqaU11XOdGHrnBU55ZpLaUWupoqfom_b3i6GXwOkvmxdMtA02kMYUsmEmhIuVLFBJ1vUxJBSBFt20bU6rktKyo3xcmu83BkfA-e77qFqod7j_xWPwMUWGIPlcxiiH1_9qO0v_0GMYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478034797</pqid></control><display><type>article</type><title>Self-Limiting Growth of Single-Layer N‑Doped Graphene Encapsulating Nickel Nanoparticles for Efficient Hydrogen Production</title><source>ACS Publications</source><creator>Zhang, Chunfei ; Ju, Shenghong ; Kang, Tong-Hyun ; Park, Gisang ; Lee, Byong-June ; Miao, He ; Wu, Yunwen ; Yuan, Jinliang ; Yu, Jong-Sung</creator><creatorcontrib>Zhang, Chunfei ; Ju, Shenghong ; Kang, Tong-Hyun ; Park, Gisang ; Lee, Byong-June ; Miao, He ; Wu, Yunwen ; Yuan, Jinliang ; Yu, Jong-Sung</creatorcontrib><description>Effective nonprecious metal catalysts are urgently needed for hydrogen evolution reaction (HER). The hybridization of N-doped graphene and a cost-effective metal is expected to be a promising approach for enhanced HER performance but faces bottlenecks in controllable fabrication. Herein, a silica medium-assisted method is developed for the high-efficient synthesis of single-layer N-doped graphene encapsulating nickel nanoparticles (Ni@SNG), where silica nanosheets molecule sieves tactfully assist the self-limiting growth of single-layer graphene over Ni nanoparticles by depressing the diffusion of gaseous carbon radical reactants. The Ni@SNG sample synthesized at 800 °C shows excellent activity for HER in alkaline medium with a low overpotential of 99.8 mV at 10 mA cm–2, which is close to that of the state-of-the-art Pt/C catalyst. Significantly, the Ni@SNG catalyst is also developed as a binder-free electrode in magnetic field, exhibiting much improved performance than the common Nafion binder-based electrode. Therefore, the magnetism adsorption technique will be a greatly promising approach to overcome the high electron resistance and poor adhesive stability of polymer binder-based electrodes in practical applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c17557</identifier><identifier>PMID: 33440933</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Functional Nanostructured Materials (including low-D carbon)</subject><ispartof>ACS applied materials &amp; interfaces, 2021-01, Vol.13 (3), p.4294-4304</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-3575c1013677cb7a2e0bc70675130edb31427813db62a9fd629613a355f467873</citedby><cites>FETCH-LOGICAL-a330t-3575c1013677cb7a2e0bc70675130edb31427813db62a9fd629613a355f467873</cites><orcidid>0000-0001-5404-607X ; 0000-0002-8805-012X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c17557$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c17557$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33440933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Chunfei</creatorcontrib><creatorcontrib>Ju, Shenghong</creatorcontrib><creatorcontrib>Kang, Tong-Hyun</creatorcontrib><creatorcontrib>Park, Gisang</creatorcontrib><creatorcontrib>Lee, Byong-June</creatorcontrib><creatorcontrib>Miao, He</creatorcontrib><creatorcontrib>Wu, Yunwen</creatorcontrib><creatorcontrib>Yuan, Jinliang</creatorcontrib><creatorcontrib>Yu, Jong-Sung</creatorcontrib><title>Self-Limiting Growth of Single-Layer N‑Doped Graphene Encapsulating Nickel Nanoparticles for Efficient Hydrogen Production</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Effective nonprecious metal catalysts are urgently needed for hydrogen evolution reaction (HER). The hybridization of N-doped graphene and a cost-effective metal is expected to be a promising approach for enhanced HER performance but faces bottlenecks in controllable fabrication. Herein, a silica medium-assisted method is developed for the high-efficient synthesis of single-layer N-doped graphene encapsulating nickel nanoparticles (Ni@SNG), where silica nanosheets molecule sieves tactfully assist the self-limiting growth of single-layer graphene over Ni nanoparticles by depressing the diffusion of gaseous carbon radical reactants. The Ni@SNG sample synthesized at 800 °C shows excellent activity for HER in alkaline medium with a low overpotential of 99.8 mV at 10 mA cm–2, which is close to that of the state-of-the-art Pt/C catalyst. Significantly, the Ni@SNG catalyst is also developed as a binder-free electrode in magnetic field, exhibiting much improved performance than the common Nafion binder-based electrode. Therefore, the magnetism adsorption technique will be a greatly promising approach to overcome the high electron resistance and poor adhesive stability of polymer binder-based electrodes in practical applications.</description><subject>Functional Nanostructured Materials (including low-D carbon)</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtq3DAUhkVJaC7tNsugZQl4oqs1XobJJFMYJoG0ayPLR4kSW3IlmzCQRV-hr5gnqacznV1W5xz4_h_Oh9AZJRNKGL3UJunWTYihSkr1CR3TQohsyiQ72O9CHKGTlJ4JyTkj8jM64lwIUnB-jN4eoLHZ0rWud_4R38bw2j_hYPHDeDaQLfUaIl69__5zHTqoR0B3T-ABz73RXRoa_S-3cuYFGrzSPnQ69s40kLANEc-tdcaB7_FiXcfwCB7fx1APpnfBf0GHVjcJvu7mKfp5M_8xW2TLu9vvs6tlpjknfcalkoYSynOlTKU0A1IZRXIlKSdQV5wKpqaU11XOdGHrnBU55ZpLaUWupoqfom_b3i6GXwOkvmxdMtA02kMYUsmEmhIuVLFBJ1vUxJBSBFt20bU6rktKyo3xcmu83BkfA-e77qFqod7j_xWPwMUWGIPlcxiiH1_9qO0v_0GMYg</recordid><startdate>20210127</startdate><enddate>20210127</enddate><creator>Zhang, Chunfei</creator><creator>Ju, Shenghong</creator><creator>Kang, Tong-Hyun</creator><creator>Park, Gisang</creator><creator>Lee, Byong-June</creator><creator>Miao, He</creator><creator>Wu, Yunwen</creator><creator>Yuan, Jinliang</creator><creator>Yu, Jong-Sung</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5404-607X</orcidid><orcidid>https://orcid.org/0000-0002-8805-012X</orcidid></search><sort><creationdate>20210127</creationdate><title>Self-Limiting Growth of Single-Layer N‑Doped Graphene Encapsulating Nickel Nanoparticles for Efficient Hydrogen Production</title><author>Zhang, Chunfei ; Ju, Shenghong ; Kang, Tong-Hyun ; Park, Gisang ; Lee, Byong-June ; Miao, He ; Wu, Yunwen ; Yuan, Jinliang ; Yu, Jong-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-3575c1013677cb7a2e0bc70675130edb31427813db62a9fd629613a355f467873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Functional Nanostructured Materials (including low-D carbon)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chunfei</creatorcontrib><creatorcontrib>Ju, Shenghong</creatorcontrib><creatorcontrib>Kang, Tong-Hyun</creatorcontrib><creatorcontrib>Park, Gisang</creatorcontrib><creatorcontrib>Lee, Byong-June</creatorcontrib><creatorcontrib>Miao, He</creatorcontrib><creatorcontrib>Wu, Yunwen</creatorcontrib><creatorcontrib>Yuan, Jinliang</creatorcontrib><creatorcontrib>Yu, Jong-Sung</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chunfei</au><au>Ju, Shenghong</au><au>Kang, Tong-Hyun</au><au>Park, Gisang</au><au>Lee, Byong-June</au><au>Miao, He</au><au>Wu, Yunwen</au><au>Yuan, Jinliang</au><au>Yu, Jong-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Limiting Growth of Single-Layer N‑Doped Graphene Encapsulating Nickel Nanoparticles for Efficient Hydrogen Production</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-01-27</date><risdate>2021</risdate><volume>13</volume><issue>3</issue><spage>4294</spage><epage>4304</epage><pages>4294-4304</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Effective nonprecious metal catalysts are urgently needed for hydrogen evolution reaction (HER). The hybridization of N-doped graphene and a cost-effective metal is expected to be a promising approach for enhanced HER performance but faces bottlenecks in controllable fabrication. Herein, a silica medium-assisted method is developed for the high-efficient synthesis of single-layer N-doped graphene encapsulating nickel nanoparticles (Ni@SNG), where silica nanosheets molecule sieves tactfully assist the self-limiting growth of single-layer graphene over Ni nanoparticles by depressing the diffusion of gaseous carbon radical reactants. The Ni@SNG sample synthesized at 800 °C shows excellent activity for HER in alkaline medium with a low overpotential of 99.8 mV at 10 mA cm–2, which is close to that of the state-of-the-art Pt/C catalyst. Significantly, the Ni@SNG catalyst is also developed as a binder-free electrode in magnetic field, exhibiting much improved performance than the common Nafion binder-based electrode. Therefore, the magnetism adsorption technique will be a greatly promising approach to overcome the high electron resistance and poor adhesive stability of polymer binder-based electrodes in practical applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33440933</pmid><doi>10.1021/acsami.0c17557</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5404-607X</orcidid><orcidid>https://orcid.org/0000-0002-8805-012X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-01, Vol.13 (3), p.4294-4304
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2478034797
source ACS Publications
subjects Functional Nanostructured Materials (including low-D carbon)
title Self-Limiting Growth of Single-Layer N‑Doped Graphene Encapsulating Nickel Nanoparticles for Efficient Hydrogen Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Limiting%20Growth%20of%20Single-Layer%20N%E2%80%91Doped%20Graphene%20Encapsulating%20Nickel%20Nanoparticles%20for%20Efficient%20Hydrogen%20Production&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Chunfei&rft.date=2021-01-27&rft.volume=13&rft.issue=3&rft.spage=4294&rft.epage=4304&rft.pages=4294-4304&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c17557&rft_dat=%3Cproquest_cross%3E2478034797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478034797&rft_id=info:pmid/33440933&rfr_iscdi=true