Single Atom Ruthenium‐Doped CoP/CDs Nanosheets via Splicing of Carbon‐Dots for Robust Hydrogen Production

Ultrathin two‐dimensional catalysts are attracting attention in the field of electrocatalytic hydrogen evolution. This work describe a composite material design in which CoP nanoparticles doped with Ru single‐atom sites supported on carbon dots (CDs) single‐layer nanosheets formed by splicing CDs (R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-03, Vol.60 (13), p.7234-7244
Hauptverfasser: Song, Haoqiang, Wu, Min, Tang, Zhiyong, Tse, John S., Yang, Bai, Lu, Siyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7244
container_issue 13
container_start_page 7234
container_title Angewandte Chemie International Edition
container_volume 60
creator Song, Haoqiang
Wu, Min
Tang, Zhiyong
Tse, John S.
Yang, Bai
Lu, Siyu
description Ultrathin two‐dimensional catalysts are attracting attention in the field of electrocatalytic hydrogen evolution. This work describe a composite material design in which CoP nanoparticles doped with Ru single‐atom sites supported on carbon dots (CDs) single‐layer nanosheets formed by splicing CDs (Ru1CoP/CDs). Small CD fragments bore abundant functional groups, analogous to pieces of a jigsaw puzzle, and could provide a high density of binding sites to immobilize Ru1CoP. The single‐particle‐thick nanosheets formed by splicing CDs acted as supports, which improved the conductivity of the electrocatalyst and the stability of the catalyst during operation. The Ru1CoP/CDs formed from doping atomic Ru dispersed on CoP showed very high efficiency for the hydrogen evolution reaction (HER) over a wide pH range. The catalyst prepared under optimized conditions displayed outstanding stability and activity: the overpotential for the HER at a current density of 10 mA cm−2 was as low as 51 and 49 mV under alkaline and acidic conditions, respectively. Density functional theory calculations showed that the substituted Ru single atoms lowered the proton‐coupled electron transfer energy barrier and promoted H−H bond formation, thereby enhancing catalytic performance for the HER. The findings open a new avenue for developing carbon‐based hybridization materials with integrated electrocatalytic performance for water splitting. A composite material was synthesized in which CoP nanoparticles, doped with single‐atom Ru sites, are supported on single‐particle thick nanosheets formed by splicing of CDs (Ru1CoP/CDs). The catalyst prepared under optimized conditions displayed an outstanding stability and activity for hydrogen evolution reaction in alkaline and acidic conditions.
doi_str_mv 10.1002/anie.202017102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2477515879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501878826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-38dc18ba1f1f2c8b79279becc3e7b262e83dccc8a1745c3ddc925e594ed2aa093</originalsourceid><addsrcrecordid>eNqFkc9O3DAQxi1EBZT2yrGyxKWXLP6TrJ3jKkBBQhRBe7YcewJGib21k6K99RH6jDwJ3i4FiQunGWl-36eZ-RA6oGRGCWFH2juYMcIIFZSwLbRHK0YLLgTfzn3JeSFkRXfRx5TuMy8lme-gXc5LLjmje2i4cf62B7wYw4Cvp_EOvJuGxz9_j8MSLG7C1VFznPCl9iHdAYwJ_3Ya3yx7Z7IQhw43OrbB_1PkaRcivg7tlEZ8trIx3ILHVzHYyYwu-E_oQ6f7BJ-f6z76eXryozkrLr5_O28WF4Up8xUFl9ZQ2Wra0Y4Z2YqaiboFYziIls0ZSG6NMVJTUVaGW2tqVkFVl2CZ1qTm--jrxncZw68J0qgGlwz0vfYQpqRYKURFKynW6OEb9D5M0eftFKsIlUJKNs_UbEOZGFKK0KlldIOOK0WJWgeh1kGolyCy4Muz7dQOYF_w_5_PQL0BHlwPq3fs1OLy_OTV_Ak2YZav</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501878826</pqid></control><display><type>article</type><title>Single Atom Ruthenium‐Doped CoP/CDs Nanosheets via Splicing of Carbon‐Dots for Robust Hydrogen Production</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Song, Haoqiang ; Wu, Min ; Tang, Zhiyong ; Tse, John S. ; Yang, Bai ; Lu, Siyu</creator><creatorcontrib>Song, Haoqiang ; Wu, Min ; Tang, Zhiyong ; Tse, John S. ; Yang, Bai ; Lu, Siyu</creatorcontrib><description>Ultrathin two‐dimensional catalysts are attracting attention in the field of electrocatalytic hydrogen evolution. This work describe a composite material design in which CoP nanoparticles doped with Ru single‐atom sites supported on carbon dots (CDs) single‐layer nanosheets formed by splicing CDs (Ru1CoP/CDs). Small CD fragments bore abundant functional groups, analogous to pieces of a jigsaw puzzle, and could provide a high density of binding sites to immobilize Ru1CoP. The single‐particle‐thick nanosheets formed by splicing CDs acted as supports, which improved the conductivity of the electrocatalyst and the stability of the catalyst during operation. The Ru1CoP/CDs formed from doping atomic Ru dispersed on CoP showed very high efficiency for the hydrogen evolution reaction (HER) over a wide pH range. The catalyst prepared under optimized conditions displayed outstanding stability and activity: the overpotential for the HER at a current density of 10 mA cm−2 was as low as 51 and 49 mV under alkaline and acidic conditions, respectively. Density functional theory calculations showed that the substituted Ru single atoms lowered the proton‐coupled electron transfer energy barrier and promoted H−H bond formation, thereby enhancing catalytic performance for the HER. The findings open a new avenue for developing carbon‐based hybridization materials with integrated electrocatalytic performance for water splitting. A composite material was synthesized in which CoP nanoparticles, doped with single‐atom Ru sites, are supported on single‐particle thick nanosheets formed by splicing of CDs (Ru1CoP/CDs). The catalyst prepared under optimized conditions displayed an outstanding stability and activity for hydrogen evolution reaction in alkaline and acidic conditions.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202017102</identifier><identifier>PMID: 33438321</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Binding sites ; Carbon ; Carbon dots ; Catalysts ; Composite materials ; Density functional theory ; Electrocatalysts ; Electron transfer ; Functional groups ; Hybridization ; Hydrogen ; Hydrogen bonds ; Hydrogen evolution reactions ; Hydrogen production ; Nanoparticles ; Nanosheets ; Ruthenium ; single-atom catalysts ; Splicing ; Stability ; transition metal phosphides ; Water splitting</subject><ispartof>Angewandte Chemie International Edition, 2021-03, Vol.60 (13), p.7234-7244</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-38dc18ba1f1f2c8b79279becc3e7b262e83dccc8a1745c3ddc925e594ed2aa093</citedby><cites>FETCH-LOGICAL-c4102-38dc18ba1f1f2c8b79279becc3e7b262e83dccc8a1745c3ddc925e594ed2aa093</cites><orcidid>0000-0003-4538-7846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202017102$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202017102$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33438321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Haoqiang</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Tang, Zhiyong</creatorcontrib><creatorcontrib>Tse, John S.</creatorcontrib><creatorcontrib>Yang, Bai</creatorcontrib><creatorcontrib>Lu, Siyu</creatorcontrib><title>Single Atom Ruthenium‐Doped CoP/CDs Nanosheets via Splicing of Carbon‐Dots for Robust Hydrogen Production</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Ultrathin two‐dimensional catalysts are attracting attention in the field of electrocatalytic hydrogen evolution. This work describe a composite material design in which CoP nanoparticles doped with Ru single‐atom sites supported on carbon dots (CDs) single‐layer nanosheets formed by splicing CDs (Ru1CoP/CDs). Small CD fragments bore abundant functional groups, analogous to pieces of a jigsaw puzzle, and could provide a high density of binding sites to immobilize Ru1CoP. The single‐particle‐thick nanosheets formed by splicing CDs acted as supports, which improved the conductivity of the electrocatalyst and the stability of the catalyst during operation. The Ru1CoP/CDs formed from doping atomic Ru dispersed on CoP showed very high efficiency for the hydrogen evolution reaction (HER) over a wide pH range. The catalyst prepared under optimized conditions displayed outstanding stability and activity: the overpotential for the HER at a current density of 10 mA cm−2 was as low as 51 and 49 mV under alkaline and acidic conditions, respectively. Density functional theory calculations showed that the substituted Ru single atoms lowered the proton‐coupled electron transfer energy barrier and promoted H−H bond formation, thereby enhancing catalytic performance for the HER. The findings open a new avenue for developing carbon‐based hybridization materials with integrated electrocatalytic performance for water splitting. A composite material was synthesized in which CoP nanoparticles, doped with single‐atom Ru sites, are supported on single‐particle thick nanosheets formed by splicing of CDs (Ru1CoP/CDs). The catalyst prepared under optimized conditions displayed an outstanding stability and activity for hydrogen evolution reaction in alkaline and acidic conditions.</description><subject>Binding sites</subject><subject>Carbon</subject><subject>Carbon dots</subject><subject>Catalysts</subject><subject>Composite materials</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Functional groups</subject><subject>Hybridization</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Ruthenium</subject><subject>single-atom catalysts</subject><subject>Splicing</subject><subject>Stability</subject><subject>transition metal phosphides</subject><subject>Water splitting</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc9O3DAQxi1EBZT2yrGyxKWXLP6TrJ3jKkBBQhRBe7YcewJGib21k6K99RH6jDwJ3i4FiQunGWl-36eZ-RA6oGRGCWFH2juYMcIIFZSwLbRHK0YLLgTfzn3JeSFkRXfRx5TuMy8lme-gXc5LLjmje2i4cf62B7wYw4Cvp_EOvJuGxz9_j8MSLG7C1VFznPCl9iHdAYwJ_3Ya3yx7Z7IQhw43OrbB_1PkaRcivg7tlEZ8trIx3ILHVzHYyYwu-E_oQ6f7BJ-f6z76eXryozkrLr5_O28WF4Up8xUFl9ZQ2Wra0Y4Z2YqaiboFYziIls0ZSG6NMVJTUVaGW2tqVkFVl2CZ1qTm--jrxncZw68J0qgGlwz0vfYQpqRYKURFKynW6OEb9D5M0eftFKsIlUJKNs_UbEOZGFKK0KlldIOOK0WJWgeh1kGolyCy4Muz7dQOYF_w_5_PQL0BHlwPq3fs1OLy_OTV_Ak2YZav</recordid><startdate>20210322</startdate><enddate>20210322</enddate><creator>Song, Haoqiang</creator><creator>Wu, Min</creator><creator>Tang, Zhiyong</creator><creator>Tse, John S.</creator><creator>Yang, Bai</creator><creator>Lu, Siyu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4538-7846</orcidid></search><sort><creationdate>20210322</creationdate><title>Single Atom Ruthenium‐Doped CoP/CDs Nanosheets via Splicing of Carbon‐Dots for Robust Hydrogen Production</title><author>Song, Haoqiang ; Wu, Min ; Tang, Zhiyong ; Tse, John S. ; Yang, Bai ; Lu, Siyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-38dc18ba1f1f2c8b79279becc3e7b262e83dccc8a1745c3ddc925e594ed2aa093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding sites</topic><topic>Carbon</topic><topic>Carbon dots</topic><topic>Catalysts</topic><topic>Composite materials</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Functional groups</topic><topic>Hybridization</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Ruthenium</topic><topic>single-atom catalysts</topic><topic>Splicing</topic><topic>Stability</topic><topic>transition metal phosphides</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Haoqiang</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Tang, Zhiyong</creatorcontrib><creatorcontrib>Tse, John S.</creatorcontrib><creatorcontrib>Yang, Bai</creatorcontrib><creatorcontrib>Lu, Siyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Haoqiang</au><au>Wu, Min</au><au>Tang, Zhiyong</au><au>Tse, John S.</au><au>Yang, Bai</au><au>Lu, Siyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single Atom Ruthenium‐Doped CoP/CDs Nanosheets via Splicing of Carbon‐Dots for Robust Hydrogen Production</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2021-03-22</date><risdate>2021</risdate><volume>60</volume><issue>13</issue><spage>7234</spage><epage>7244</epage><pages>7234-7244</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Ultrathin two‐dimensional catalysts are attracting attention in the field of electrocatalytic hydrogen evolution. This work describe a composite material design in which CoP nanoparticles doped with Ru single‐atom sites supported on carbon dots (CDs) single‐layer nanosheets formed by splicing CDs (Ru1CoP/CDs). Small CD fragments bore abundant functional groups, analogous to pieces of a jigsaw puzzle, and could provide a high density of binding sites to immobilize Ru1CoP. The single‐particle‐thick nanosheets formed by splicing CDs acted as supports, which improved the conductivity of the electrocatalyst and the stability of the catalyst during operation. The Ru1CoP/CDs formed from doping atomic Ru dispersed on CoP showed very high efficiency for the hydrogen evolution reaction (HER) over a wide pH range. The catalyst prepared under optimized conditions displayed outstanding stability and activity: the overpotential for the HER at a current density of 10 mA cm−2 was as low as 51 and 49 mV under alkaline and acidic conditions, respectively. Density functional theory calculations showed that the substituted Ru single atoms lowered the proton‐coupled electron transfer energy barrier and promoted H−H bond formation, thereby enhancing catalytic performance for the HER. The findings open a new avenue for developing carbon‐based hybridization materials with integrated electrocatalytic performance for water splitting. A composite material was synthesized in which CoP nanoparticles, doped with single‐atom Ru sites, are supported on single‐particle thick nanosheets formed by splicing of CDs (Ru1CoP/CDs). The catalyst prepared under optimized conditions displayed an outstanding stability and activity for hydrogen evolution reaction in alkaline and acidic conditions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33438321</pmid><doi>10.1002/anie.202017102</doi><tpages>11</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4538-7846</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2021-03, Vol.60 (13), p.7234-7244
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2477515879
source Wiley Online Library Journals Frontfile Complete
subjects Binding sites
Carbon
Carbon dots
Catalysts
Composite materials
Density functional theory
Electrocatalysts
Electron transfer
Functional groups
Hybridization
Hydrogen
Hydrogen bonds
Hydrogen evolution reactions
Hydrogen production
Nanoparticles
Nanosheets
Ruthenium
single-atom catalysts
Splicing
Stability
transition metal phosphides
Water splitting
title Single Atom Ruthenium‐Doped CoP/CDs Nanosheets via Splicing of Carbon‐Dots for Robust Hydrogen Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A44%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20Atom%20Ruthenium%E2%80%90Doped%20CoP/CDs%20Nanosheets%20via%20Splicing%20of%20Carbon%E2%80%90Dots%20for%20Robust%20Hydrogen%20Production&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Song,%20Haoqiang&rft.date=2021-03-22&rft.volume=60&rft.issue=13&rft.spage=7234&rft.epage=7244&rft.pages=7234-7244&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202017102&rft_dat=%3Cproquest_cross%3E2501878826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501878826&rft_id=info:pmid/33438321&rfr_iscdi=true