Glycoengineering of AAV-delivered monoclonal antibodies yields increased ADCC activity

The absence of fucose on asparagine-297 of the human immunoglobulin G (IgG) heavy chain has been shown to enhance antibody-dependent cellular cytotoxicity (ADCC) activity by 10- to 100-fold compared to fucosylated antibody. Our lab is studying the use of adeno-associated virus (AAV) as a vector for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy. Methods & clinical development 2021-03, Vol.20, p.204-217
Hauptverfasser: Termini, James M., Martinez-Navio, José M., Gao, Guangping, Fuchs, Sebastian P., Desrosiers, Ronald C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The absence of fucose on asparagine-297 of the human immunoglobulin G (IgG) heavy chain has been shown to enhance antibody-dependent cellular cytotoxicity (ADCC) activity by 10- to 100-fold compared to fucosylated antibody. Our lab is studying the use of adeno-associated virus (AAV) as a vector for the delivery of HIV-specific antibodies for therapeutic purposes. Since the antibody is produced by vector-transduced cells in vivo, current techniques of glycoengineering cannot be utilized. In order to achieve similar enhancement of ADCC with AAV-delivered antibodies, short hairpin RNAs (shRNAs) that target fucosyltransferase-8 (FUT8), were designed, tested, and cloned into AAV vectors used to deliver HIV-specific broadly neutralizing antibodies (bNAbs). Antibodies produced by our glycoengineered-AAV (GE-AAV) vectors were analyzed for fucose content and ADCC. GE-AAV constructs were able to achieve over 80% knockdown of FUT8. Results were confirmed by lectin western blot for α1-6 fucose, which revealed almost a complete absence of fucose on GE-AAV-produced antibodies. GE-AAV-produced antibodies revealed >10-fold enhancement of ADCC, while showing identical neutralization and gp140 trimer binding compared to their fucosylated counterparts. ADCC was enhanced 40- to 60-fold when combined with key Fc mutations known to enhance binding to FcγRIIIA. Our findings define a powerful approach for supercharging AAV-delivered anti-HIV antibodies. [Display omitted] Termini et al. describe the creation and validation of a novel glycoengineered-AAV vector for the delivery of anti-HIV antibodies. These AAV are capable of knocking down fucosyltransferase-8 following transduction and, when combined with antibody-Fc mutations, produce broadly neutralizing antibodies with 40- to 60-fold higher ADCC.
ISSN:2329-0501
2329-0501
DOI:10.1016/j.omtm.2020.11.001