Conformational Motion of Ferredoxin Enables Efficient Electron Transfer to Heme in the Full-Length P450TT
Cytochrome P450 monooxygenases (P450s) are versatile biocatalysts used in natural products biosynthesis, xenobiotic metabolisms, and biotechnologies. In P450s, the electrons required for O2 activation are supplied by NAD(P)H through stepwise electron transfers (ETs) mediated by redox partners. Whil...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2021-01, Vol.143 (2), p.1005-1016 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cytochrome P450 monooxygenases (P450s) are versatile biocatalysts used in natural products biosynthesis, xenobiotic metabolisms, and biotechnologies. In P450s, the electrons required for O2 activation are supplied by NAD(P)H through stepwise electron transfers (ETs) mediated by redox partners. While much is known about the machinery of the catalytic cycle of P450s, the mechanisms of long-range ET are largely unknown. Very recently, the first crystal structure of full-length P450TT was solved. This enables us to decipher the interdomain ET mechanism between the [2Fe–2S]-containing ferredoxin and the heme, by use of molecular dynamics simulations. In contrast to the “distal” conformation characterized in the crystal structure where the [2Fe–2S] cluster is ∼28 Å away from heme-Fe, our simulations demonstrated a “proximal” conformation of [2Fe–2S] that is ∼17 Å [and 13.7 Å edge-to-edge] away from heme-Fe, which may enable the interdomain ET. Key residues involved in ET pathways and interdomain complexation were identified, some of which have already been verified by recent mutation studies. The conformational transit of ferredoxin between “distal” and “proximal” was found to be controlled mostly by the long-range electrostatic interactions between the ferredoxin domain and the other two domains. Furthermore, our simulations show that the full-length P450TT utilizes a flexible ET pathway that resembles either P450Scc or P450cam. Thus, this study provides a uniform picture of the ET process between reductase domains and heme domain. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.0c11279 |