Investigation of the Effects of Primary Structure Modifications within the RRE Motif on the Conformation of Synthetic Bovine Herpesvirus 1‐Encoded UL49.5 Protein Fragments

Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry & biodiversity 2021-02, Vol.18 (2), p.e2000883-n/a
Hauptverfasser: Karska, Natalia, Graul, Małgorzata, Sikorska, Emilia, Ślusarz, Magdalena J., Zhukov, Igor, Kasprzykowski, Franciszek, Kubiś, Agnieszka, Lipińska, Andrea D., Rodziewicz‐Motowidło, Sylwia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e2000883
container_title Chemistry & biodiversity
container_volume 18
creator Karska, Natalia
Graul, Małgorzata
Sikorska, Emilia
Ślusarz, Magdalena J.
Zhukov, Igor
Kasprzykowski, Franciszek
Kubiś, Agnieszka
Lipińska, Andrea D.
Rodziewicz‐Motowidło, Sylwia
description Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a result, a reduced number of MHC class I molecules appear on the surface of infected cells and, thus, the immune system is not efficiently activated. BoHV‐1‐encoded UL49.5 protein is one such TAP transporter inhibitor. This protein binds to TAP in such a way that its N‐terminal fragment interacts with the loops of the TAP complex, and the C‐terminus stimulates proteasomal degradation of TAP. Previous studies have indicated certain amino acid residues, especially the RRE(9–11) motif, within the helical structure of the UL49.5 N‐terminal fragment, as being crucial to the protein's activity. In this work, we investigated the effects of modifications within the RRE region on the spatial structure of the UL49.5 N‐terminal fragment. The introduced RRE(9–11) variations were designed to abolish or stabilize the structure of the α‐helix and, consequently, to increase or decrease protein activity compared to the wild type. The terminal structure of the peptides was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane‐mimetic or membrane‐model environments. Our structural results show that in the RRE(9–11)AAA and E11G peptides the helical structure has been stabilized, whereas for the RRE(9–11)GGG peptide, as expected, the helix structure has partially unfolded compared to the native structure. These RRE modifications, in the context of the entire UL49.5 proteins, slightly altered their biological activity in human cells.
doi_str_mv 10.1002/cbdv.202000883
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2476845062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488483539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-6854afc596345090d996768e13299f3874bc76fbd00e6c78e498114d3c554c623</originalsourceid><addsrcrecordid>eNqFkc1uEzEURi0EoqWwZYkssWGT4L_x2EsaUlopCNRStqOJ57p1lbGD7UmVHY_Ai_BSPAlOpgSJDSvb1-ceW_dD6CUlU0oIe2uW3WbKCCOEKMUfoWMqKZtQpcjjw75mR-hZSneFL3X1FB1xLljNpT5GPy_8BlJ2N212weNgcb4FPLcWTE674-fo-jZu8VWOg8lDBPwxdM46s29I-N7lW-f3XZeX83KZncVhLMyCtyH2B_XV1pdydgafho3zgM8hriFtXBwSpr--_5h7Ezro8PVC6GlV3g4Zivwstjc9-Jyeoye2XSV48bCeoOuz-ZfZ-WTx6cPF7N1iYnjN-USqSrTWVFpyURFNOq1lLRVQzrS2XNViaWpplx0hIE2tQGhFqei4qSphJOMn6M3oXcfwbSjzaXqXDKxWrYcwpIaJoivqPfr6H_QuDNGX3xVKKaF4xXWhpiNlYkgpgm3W41wbSppdkM0uyOYQZGl49aAdlj10B_xPcgXQI3DvVrD9j66Znb7_-lf-G5Giq1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488483539</pqid></control><display><type>article</type><title>Investigation of the Effects of Primary Structure Modifications within the RRE Motif on the Conformation of Synthetic Bovine Herpesvirus 1‐Encoded UL49.5 Protein Fragments</title><source>Access via Wiley Online Library</source><creator>Karska, Natalia ; Graul, Małgorzata ; Sikorska, Emilia ; Ślusarz, Magdalena J. ; Zhukov, Igor ; Kasprzykowski, Franciszek ; Kubiś, Agnieszka ; Lipińska, Andrea D. ; Rodziewicz‐Motowidło, Sylwia</creator><creatorcontrib>Karska, Natalia ; Graul, Małgorzata ; Sikorska, Emilia ; Ślusarz, Magdalena J. ; Zhukov, Igor ; Kasprzykowski, Franciszek ; Kubiś, Agnieszka ; Lipińska, Andrea D. ; Rodziewicz‐Motowidło, Sylwia</creatorcontrib><description>Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a result, a reduced number of MHC class I molecules appear on the surface of infected cells and, thus, the immune system is not efficiently activated. BoHV‐1‐encoded UL49.5 protein is one such TAP transporter inhibitor. This protein binds to TAP in such a way that its N‐terminal fragment interacts with the loops of the TAP complex, and the C‐terminus stimulates proteasomal degradation of TAP. Previous studies have indicated certain amino acid residues, especially the RRE(9–11) motif, within the helical structure of the UL49.5 N‐terminal fragment, as being crucial to the protein's activity. In this work, we investigated the effects of modifications within the RRE region on the spatial structure of the UL49.5 N‐terminal fragment. The introduced RRE(9–11) variations were designed to abolish or stabilize the structure of the α‐helix and, consequently, to increase or decrease protein activity compared to the wild type. The terminal structure of the peptides was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane‐mimetic or membrane‐model environments. Our structural results show that in the RRE(9–11)AAA and E11G peptides the helical structure has been stabilized, whereas for the RRE(9–11)GGG peptide, as expected, the helix structure has partially unfolded compared to the native structure. These RRE modifications, in the context of the entire UL49.5 proteins, slightly altered their biological activity in human cells.</description><identifier>ISSN: 1612-1872</identifier><identifier>EISSN: 1612-1880</identifier><identifier>DOI: 10.1002/cbdv.202000883</identifier><identifier>PMID: 33427369</identifier><language>eng</language><publisher>Switzerland: Wiley Subscription Services, Inc</publisher><subject>Amino acid sequence ; Amino acids ; Biodegradation ; Biological activity ; Circular dichroism ; Degradation ; Dichroism ; Endoplasmic reticulum ; herpesvirus ; Immune response ; Immune system ; Major histocompatibility complex ; Membranes ; Molecular dynamics ; NMR ; NMR structure ; Nuclear magnetic resonance ; Peptides ; Proteasomes ; Protein transport ; Proteins ; UL49.5 protein</subject><ispartof>Chemistry &amp; biodiversity, 2021-02, Vol.18 (2), p.e2000883-n/a</ispartof><rights>2021 Wiley‐VHCA AG, Zurich, Switzerland</rights><rights>2021 Wiley-VHCA AG, Zurich, Switzerland.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-6854afc596345090d996768e13299f3874bc76fbd00e6c78e498114d3c554c623</citedby><cites>FETCH-LOGICAL-c3733-6854afc596345090d996768e13299f3874bc76fbd00e6c78e498114d3c554c623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbdv.202000883$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbdv.202000883$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33427369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karska, Natalia</creatorcontrib><creatorcontrib>Graul, Małgorzata</creatorcontrib><creatorcontrib>Sikorska, Emilia</creatorcontrib><creatorcontrib>Ślusarz, Magdalena J.</creatorcontrib><creatorcontrib>Zhukov, Igor</creatorcontrib><creatorcontrib>Kasprzykowski, Franciszek</creatorcontrib><creatorcontrib>Kubiś, Agnieszka</creatorcontrib><creatorcontrib>Lipińska, Andrea D.</creatorcontrib><creatorcontrib>Rodziewicz‐Motowidło, Sylwia</creatorcontrib><title>Investigation of the Effects of Primary Structure Modifications within the RRE Motif on the Conformation of Synthetic Bovine Herpesvirus 1‐Encoded UL49.5 Protein Fragments</title><title>Chemistry &amp; biodiversity</title><addtitle>Chem Biodivers</addtitle><description>Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a result, a reduced number of MHC class I molecules appear on the surface of infected cells and, thus, the immune system is not efficiently activated. BoHV‐1‐encoded UL49.5 protein is one such TAP transporter inhibitor. This protein binds to TAP in such a way that its N‐terminal fragment interacts with the loops of the TAP complex, and the C‐terminus stimulates proteasomal degradation of TAP. Previous studies have indicated certain amino acid residues, especially the RRE(9–11) motif, within the helical structure of the UL49.5 N‐terminal fragment, as being crucial to the protein's activity. In this work, we investigated the effects of modifications within the RRE region on the spatial structure of the UL49.5 N‐terminal fragment. The introduced RRE(9–11) variations were designed to abolish or stabilize the structure of the α‐helix and, consequently, to increase or decrease protein activity compared to the wild type. The terminal structure of the peptides was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane‐mimetic or membrane‐model environments. Our structural results show that in the RRE(9–11)AAA and E11G peptides the helical structure has been stabilized, whereas for the RRE(9–11)GGG peptide, as expected, the helix structure has partially unfolded compared to the native structure. These RRE modifications, in the context of the entire UL49.5 proteins, slightly altered their biological activity in human cells.</description><subject>Amino acid sequence</subject><subject>Amino acids</subject><subject>Biodegradation</subject><subject>Biological activity</subject><subject>Circular dichroism</subject><subject>Degradation</subject><subject>Dichroism</subject><subject>Endoplasmic reticulum</subject><subject>herpesvirus</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Major histocompatibility complex</subject><subject>Membranes</subject><subject>Molecular dynamics</subject><subject>NMR</subject><subject>NMR structure</subject><subject>Nuclear magnetic resonance</subject><subject>Peptides</subject><subject>Proteasomes</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>UL49.5 protein</subject><issn>1612-1872</issn><issn>1612-1880</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uEzEURi0EoqWwZYkssWGT4L_x2EsaUlopCNRStqOJ57p1lbGD7UmVHY_Ai_BSPAlOpgSJDSvb1-ceW_dD6CUlU0oIe2uW3WbKCCOEKMUfoWMqKZtQpcjjw75mR-hZSneFL3X1FB1xLljNpT5GPy_8BlJ2N212weNgcb4FPLcWTE674-fo-jZu8VWOg8lDBPwxdM46s29I-N7lW-f3XZeX83KZncVhLMyCtyH2B_XV1pdydgafho3zgM8hriFtXBwSpr--_5h7Ezro8PVC6GlV3g4Zivwstjc9-Jyeoye2XSV48bCeoOuz-ZfZ-WTx6cPF7N1iYnjN-USqSrTWVFpyURFNOq1lLRVQzrS2XNViaWpplx0hIE2tQGhFqei4qSphJOMn6M3oXcfwbSjzaXqXDKxWrYcwpIaJoivqPfr6H_QuDNGX3xVKKaF4xXWhpiNlYkgpgm3W41wbSppdkM0uyOYQZGl49aAdlj10B_xPcgXQI3DvVrD9j66Znb7_-lf-G5Giq1o</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Karska, Natalia</creator><creator>Graul, Małgorzata</creator><creator>Sikorska, Emilia</creator><creator>Ślusarz, Magdalena J.</creator><creator>Zhukov, Igor</creator><creator>Kasprzykowski, Franciszek</creator><creator>Kubiś, Agnieszka</creator><creator>Lipińska, Andrea D.</creator><creator>Rodziewicz‐Motowidło, Sylwia</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202102</creationdate><title>Investigation of the Effects of Primary Structure Modifications within the RRE Motif on the Conformation of Synthetic Bovine Herpesvirus 1‐Encoded UL49.5 Protein Fragments</title><author>Karska, Natalia ; Graul, Małgorzata ; Sikorska, Emilia ; Ślusarz, Magdalena J. ; Zhukov, Igor ; Kasprzykowski, Franciszek ; Kubiś, Agnieszka ; Lipińska, Andrea D. ; Rodziewicz‐Motowidło, Sylwia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-6854afc596345090d996768e13299f3874bc76fbd00e6c78e498114d3c554c623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acid sequence</topic><topic>Amino acids</topic><topic>Biodegradation</topic><topic>Biological activity</topic><topic>Circular dichroism</topic><topic>Degradation</topic><topic>Dichroism</topic><topic>Endoplasmic reticulum</topic><topic>herpesvirus</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Major histocompatibility complex</topic><topic>Membranes</topic><topic>Molecular dynamics</topic><topic>NMR</topic><topic>NMR structure</topic><topic>Nuclear magnetic resonance</topic><topic>Peptides</topic><topic>Proteasomes</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>UL49.5 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karska, Natalia</creatorcontrib><creatorcontrib>Graul, Małgorzata</creatorcontrib><creatorcontrib>Sikorska, Emilia</creatorcontrib><creatorcontrib>Ślusarz, Magdalena J.</creatorcontrib><creatorcontrib>Zhukov, Igor</creatorcontrib><creatorcontrib>Kasprzykowski, Franciszek</creatorcontrib><creatorcontrib>Kubiś, Agnieszka</creatorcontrib><creatorcontrib>Lipińska, Andrea D.</creatorcontrib><creatorcontrib>Rodziewicz‐Motowidło, Sylwia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry &amp; biodiversity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karska, Natalia</au><au>Graul, Małgorzata</au><au>Sikorska, Emilia</au><au>Ślusarz, Magdalena J.</au><au>Zhukov, Igor</au><au>Kasprzykowski, Franciszek</au><au>Kubiś, Agnieszka</au><au>Lipińska, Andrea D.</au><au>Rodziewicz‐Motowidło, Sylwia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the Effects of Primary Structure Modifications within the RRE Motif on the Conformation of Synthetic Bovine Herpesvirus 1‐Encoded UL49.5 Protein Fragments</atitle><jtitle>Chemistry &amp; biodiversity</jtitle><addtitle>Chem Biodivers</addtitle><date>2021-02</date><risdate>2021</risdate><volume>18</volume><issue>2</issue><spage>e2000883</spage><epage>n/a</epage><pages>e2000883-n/a</pages><issn>1612-1872</issn><eissn>1612-1880</eissn><abstract>Herpesviruses are the most prevalent viruses that infect the human and animal body. They can escape a host immune response in numerous ways. One way is to block the TAP complex so that viral peptides, originating from proteasomal degradation, cannot be transported to the endoplasmic reticulum. As a result, a reduced number of MHC class I molecules appear on the surface of infected cells and, thus, the immune system is not efficiently activated. BoHV‐1‐encoded UL49.5 protein is one such TAP transporter inhibitor. This protein binds to TAP in such a way that its N‐terminal fragment interacts with the loops of the TAP complex, and the C‐terminus stimulates proteasomal degradation of TAP. Previous studies have indicated certain amino acid residues, especially the RRE(9–11) motif, within the helical structure of the UL49.5 N‐terminal fragment, as being crucial to the protein's activity. In this work, we investigated the effects of modifications within the RRE region on the spatial structure of the UL49.5 N‐terminal fragment. The introduced RRE(9–11) variations were designed to abolish or stabilize the structure of the α‐helix and, consequently, to increase or decrease protein activity compared to the wild type. The terminal structure of the peptides was established using circular dichroism (CD), 2D nuclear magnetic resonance (NMR), and molecular dynamics (MD) in membrane‐mimetic or membrane‐model environments. Our structural results show that in the RRE(9–11)AAA and E11G peptides the helical structure has been stabilized, whereas for the RRE(9–11)GGG peptide, as expected, the helix structure has partially unfolded compared to the native structure. These RRE modifications, in the context of the entire UL49.5 proteins, slightly altered their biological activity in human cells.</abstract><cop>Switzerland</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33427369</pmid><doi>10.1002/cbdv.202000883</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1612-1872
ispartof Chemistry & biodiversity, 2021-02, Vol.18 (2), p.e2000883-n/a
issn 1612-1872
1612-1880
language eng
recordid cdi_proquest_miscellaneous_2476845062
source Access via Wiley Online Library
subjects Amino acid sequence
Amino acids
Biodegradation
Biological activity
Circular dichroism
Degradation
Dichroism
Endoplasmic reticulum
herpesvirus
Immune response
Immune system
Major histocompatibility complex
Membranes
Molecular dynamics
NMR
NMR structure
Nuclear magnetic resonance
Peptides
Proteasomes
Protein transport
Proteins
UL49.5 protein
title Investigation of the Effects of Primary Structure Modifications within the RRE Motif on the Conformation of Synthetic Bovine Herpesvirus 1‐Encoded UL49.5 Protein Fragments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20Effects%20of%20Primary%20Structure%20Modifications%20within%20the%20RRE%20Motif%20on%20the%20Conformation%20of%20Synthetic%20Bovine%20Herpesvirus%201%E2%80%90Encoded%20UL49.5%20Protein%20Fragments&rft.jtitle=Chemistry%20&%20biodiversity&rft.au=Karska,%20Natalia&rft.date=2021-02&rft.volume=18&rft.issue=2&rft.spage=e2000883&rft.epage=n/a&rft.pages=e2000883-n/a&rft.issn=1612-1872&rft.eissn=1612-1880&rft_id=info:doi/10.1002/cbdv.202000883&rft_dat=%3Cproquest_cross%3E2488483539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488483539&rft_id=info:pmid/33427369&rfr_iscdi=true