In Situ Scanning Transmission Electron Microscopy Observations of Fracture at the Atomic Scale
The formation, propagation, and structure of nanoscale cracks determine the failure mechanics of engineered materials. Herein, we have captured, with atomic resolution and in real time, unit cell-by-unit cell lattice-trapped cracking in two-dimensional (2D) rhenium disulfide (ReS_{2}) using in situ...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-12, Vol.125 (24), p.246102-246102, Article 246102 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 246102 |
---|---|
container_issue | 24 |
container_start_page | 246102 |
container_title | Physical review letters |
container_volume | 125 |
creator | Huang, Lingli Zheng, Fangyuan Deng, Qingming Thi, Quoc Huy Wong, Lok Wing Cai, Yuan Wang, Ning Lee, Chun-Sing Lau, Shu Ping Chhowalla, Manish Li, Ju Ly, Thuc Hue Zhao, Jiong |
description | The formation, propagation, and structure of nanoscale cracks determine the failure mechanics of engineered materials. Herein, we have captured, with atomic resolution and in real time, unit cell-by-unit cell lattice-trapped cracking in two-dimensional (2D) rhenium disulfide (ReS_{2}) using in situ aberration corrected scanning transmission electron microscopy (STEM). Our real time observations of atomic configurations and corresponding strain fields in propagating cracks directly reveal the atomistic fracture mechanisms. The entirely brittle fracture with non-blunted crack tips as well as perfect healing of cracks have been observed. The mode I fracture toughness of 2D ReS_{2} is measured. Our experiments have bridged the linear elastic deformation zone and the ultimate nm-sized nonlinear deformation zone inside the crack tip. The dynamics of fracture has been explained by the atomic lattice trapping model. The direct visualization on the strain field in the ongoing crack tips and the gained insights of discrete bond breaking or healing in cracks will facilitate deeper insights into how atoms are able to withstand exceptionally large strains at the crack tips. |
doi_str_mv | 10.1103/PhysRevLett.125.246102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2476568500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471032183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4138fa28bfa70d407ca7bba4b5be0b37b0b80805838c8059be15cb0e312d7c863</originalsourceid><addsrcrecordid>eNpdUV1LAzEQDKJorf6FEvDFl6u7yd0lfRTxCyqK1ueQpDk9ud7VJFfov_G3-MtMqYr4tAs7M-zMEDJCGCMCP3t4XYdHt5q6GMfIijHLSwS2QwYIYpIJxHyXDAA4ZhMAcUAOQ3gDAGSl3CcHnOfIACcDom7bz4-nOvb0yeq2rdsXOvO6DYs6hLpr6WXjbPRpuaut74Ltlmt6b4LzKx3TPdCuolde29h7R3Wk8dXR89gtarsRbNwR2at0E9zx9xyS56vL2cVNNr2_vr04n2aWSxGzHLmsNJOm0gLmOQirhTE6N4VxYLgwYCRIKCSXNo2JcVhYA44jmwsrSz4kp1vdpe_eexeiSg6saxrduq4PiuWiLEpZpEiG5OQf9K3rfZu-26BSuAwlT6hyi9rYDt5VaunrhfZrhaA2Fag_FahUgdpWkIijb_neLNz8l_aTOf8CIp-FzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471032183</pqid></control><display><type>article</type><title>In Situ Scanning Transmission Electron Microscopy Observations of Fracture at the Atomic Scale</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Huang, Lingli ; Zheng, Fangyuan ; Deng, Qingming ; Thi, Quoc Huy ; Wong, Lok Wing ; Cai, Yuan ; Wang, Ning ; Lee, Chun-Sing ; Lau, Shu Ping ; Chhowalla, Manish ; Li, Ju ; Ly, Thuc Hue ; Zhao, Jiong</creator><creatorcontrib>Huang, Lingli ; Zheng, Fangyuan ; Deng, Qingming ; Thi, Quoc Huy ; Wong, Lok Wing ; Cai, Yuan ; Wang, Ning ; Lee, Chun-Sing ; Lau, Shu Ping ; Chhowalla, Manish ; Li, Ju ; Ly, Thuc Hue ; Zhao, Jiong</creatorcontrib><description>The formation, propagation, and structure of nanoscale cracks determine the failure mechanics of engineered materials. Herein, we have captured, with atomic resolution and in real time, unit cell-by-unit cell lattice-trapped cracking in two-dimensional (2D) rhenium disulfide (ReS_{2}) using in situ aberration corrected scanning transmission electron microscopy (STEM). Our real time observations of atomic configurations and corresponding strain fields in propagating cracks directly reveal the atomistic fracture mechanisms. The entirely brittle fracture with non-blunted crack tips as well as perfect healing of cracks have been observed. The mode I fracture toughness of 2D ReS_{2} is measured. Our experiments have bridged the linear elastic deformation zone and the ultimate nm-sized nonlinear deformation zone inside the crack tip. The dynamics of fracture has been explained by the atomic lattice trapping model. The direct visualization on the strain field in the ongoing crack tips and the gained insights of discrete bond breaking or healing in cracks will facilitate deeper insights into how atoms are able to withstand exceptionally large strains at the crack tips.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.125.246102</identifier><identifier>PMID: 33412019</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Crack propagation ; Crack tips ; Cracks ; Elastic deformation ; Fracture mechanics ; Fracture toughness ; Healing ; Real time ; Rhenium ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Strain ; Transmission electron microscopy ; Unit cell</subject><ispartof>Physical review letters, 2020-12, Vol.125 (24), p.246102-246102, Article 246102</ispartof><rights>Copyright American Physical Society Dec 11, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4138fa28bfa70d407ca7bba4b5be0b37b0b80805838c8059be15cb0e312d7c863</citedby><cites>FETCH-LOGICAL-c387t-4138fa28bfa70d407ca7bba4b5be0b37b0b80805838c8059be15cb0e312d7c863</cites><orcidid>0000-0002-6298-7993 ; 0000-0003-0014-4568 ; 0000-0002-5293-0256 ; 0000-0002-1834-4173 ; 0000-0002-7411-0734 ; 0000-0001-7852-3811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33412019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Lingli</creatorcontrib><creatorcontrib>Zheng, Fangyuan</creatorcontrib><creatorcontrib>Deng, Qingming</creatorcontrib><creatorcontrib>Thi, Quoc Huy</creatorcontrib><creatorcontrib>Wong, Lok Wing</creatorcontrib><creatorcontrib>Cai, Yuan</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Lee, Chun-Sing</creatorcontrib><creatorcontrib>Lau, Shu Ping</creatorcontrib><creatorcontrib>Chhowalla, Manish</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Ly, Thuc Hue</creatorcontrib><creatorcontrib>Zhao, Jiong</creatorcontrib><title>In Situ Scanning Transmission Electron Microscopy Observations of Fracture at the Atomic Scale</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The formation, propagation, and structure of nanoscale cracks determine the failure mechanics of engineered materials. Herein, we have captured, with atomic resolution and in real time, unit cell-by-unit cell lattice-trapped cracking in two-dimensional (2D) rhenium disulfide (ReS_{2}) using in situ aberration corrected scanning transmission electron microscopy (STEM). Our real time observations of atomic configurations and corresponding strain fields in propagating cracks directly reveal the atomistic fracture mechanisms. The entirely brittle fracture with non-blunted crack tips as well as perfect healing of cracks have been observed. The mode I fracture toughness of 2D ReS_{2} is measured. Our experiments have bridged the linear elastic deformation zone and the ultimate nm-sized nonlinear deformation zone inside the crack tip. The dynamics of fracture has been explained by the atomic lattice trapping model. The direct visualization on the strain field in the ongoing crack tips and the gained insights of discrete bond breaking or healing in cracks will facilitate deeper insights into how atoms are able to withstand exceptionally large strains at the crack tips.</description><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Cracks</subject><subject>Elastic deformation</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Healing</subject><subject>Real time</subject><subject>Rhenium</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Strain</subject><subject>Transmission electron microscopy</subject><subject>Unit cell</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdUV1LAzEQDKJorf6FEvDFl6u7yd0lfRTxCyqK1ueQpDk9ud7VJFfov_G3-MtMqYr4tAs7M-zMEDJCGCMCP3t4XYdHt5q6GMfIijHLSwS2QwYIYpIJxHyXDAA4ZhMAcUAOQ3gDAGSl3CcHnOfIACcDom7bz4-nOvb0yeq2rdsXOvO6DYs6hLpr6WXjbPRpuaut74Ltlmt6b4LzKx3TPdCuolde29h7R3Wk8dXR89gtarsRbNwR2at0E9zx9xyS56vL2cVNNr2_vr04n2aWSxGzHLmsNJOm0gLmOQirhTE6N4VxYLgwYCRIKCSXNo2JcVhYA44jmwsrSz4kp1vdpe_eexeiSg6saxrduq4PiuWiLEpZpEiG5OQf9K3rfZu-26BSuAwlT6hyi9rYDt5VaunrhfZrhaA2Fag_FahUgdpWkIijb_neLNz8l_aTOf8CIp-FzA</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Huang, Lingli</creator><creator>Zheng, Fangyuan</creator><creator>Deng, Qingming</creator><creator>Thi, Quoc Huy</creator><creator>Wong, Lok Wing</creator><creator>Cai, Yuan</creator><creator>Wang, Ning</creator><creator>Lee, Chun-Sing</creator><creator>Lau, Shu Ping</creator><creator>Chhowalla, Manish</creator><creator>Li, Ju</creator><creator>Ly, Thuc Hue</creator><creator>Zhao, Jiong</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6298-7993</orcidid><orcidid>https://orcid.org/0000-0003-0014-4568</orcidid><orcidid>https://orcid.org/0000-0002-5293-0256</orcidid><orcidid>https://orcid.org/0000-0002-1834-4173</orcidid><orcidid>https://orcid.org/0000-0002-7411-0734</orcidid><orcidid>https://orcid.org/0000-0001-7852-3811</orcidid></search><sort><creationdate>20201211</creationdate><title>In Situ Scanning Transmission Electron Microscopy Observations of Fracture at the Atomic Scale</title><author>Huang, Lingli ; Zheng, Fangyuan ; Deng, Qingming ; Thi, Quoc Huy ; Wong, Lok Wing ; Cai, Yuan ; Wang, Ning ; Lee, Chun-Sing ; Lau, Shu Ping ; Chhowalla, Manish ; Li, Ju ; Ly, Thuc Hue ; Zhao, Jiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4138fa28bfa70d407ca7bba4b5be0b37b0b80805838c8059be15cb0e312d7c863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Cracks</topic><topic>Elastic deformation</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Healing</topic><topic>Real time</topic><topic>Rhenium</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Strain</topic><topic>Transmission electron microscopy</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lingli</creatorcontrib><creatorcontrib>Zheng, Fangyuan</creatorcontrib><creatorcontrib>Deng, Qingming</creatorcontrib><creatorcontrib>Thi, Quoc Huy</creatorcontrib><creatorcontrib>Wong, Lok Wing</creatorcontrib><creatorcontrib>Cai, Yuan</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Lee, Chun-Sing</creatorcontrib><creatorcontrib>Lau, Shu Ping</creatorcontrib><creatorcontrib>Chhowalla, Manish</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Ly, Thuc Hue</creatorcontrib><creatorcontrib>Zhao, Jiong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lingli</au><au>Zheng, Fangyuan</au><au>Deng, Qingming</au><au>Thi, Quoc Huy</au><au>Wong, Lok Wing</au><au>Cai, Yuan</au><au>Wang, Ning</au><au>Lee, Chun-Sing</au><au>Lau, Shu Ping</au><au>Chhowalla, Manish</au><au>Li, Ju</au><au>Ly, Thuc Hue</au><au>Zhao, Jiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Scanning Transmission Electron Microscopy Observations of Fracture at the Atomic Scale</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-12-11</date><risdate>2020</risdate><volume>125</volume><issue>24</issue><spage>246102</spage><epage>246102</epage><pages>246102-246102</pages><artnum>246102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The formation, propagation, and structure of nanoscale cracks determine the failure mechanics of engineered materials. Herein, we have captured, with atomic resolution and in real time, unit cell-by-unit cell lattice-trapped cracking in two-dimensional (2D) rhenium disulfide (ReS_{2}) using in situ aberration corrected scanning transmission electron microscopy (STEM). Our real time observations of atomic configurations and corresponding strain fields in propagating cracks directly reveal the atomistic fracture mechanisms. The entirely brittle fracture with non-blunted crack tips as well as perfect healing of cracks have been observed. The mode I fracture toughness of 2D ReS_{2} is measured. Our experiments have bridged the linear elastic deformation zone and the ultimate nm-sized nonlinear deformation zone inside the crack tip. The dynamics of fracture has been explained by the atomic lattice trapping model. The direct visualization on the strain field in the ongoing crack tips and the gained insights of discrete bond breaking or healing in cracks will facilitate deeper insights into how atoms are able to withstand exceptionally large strains at the crack tips.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>33412019</pmid><doi>10.1103/PhysRevLett.125.246102</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6298-7993</orcidid><orcidid>https://orcid.org/0000-0003-0014-4568</orcidid><orcidid>https://orcid.org/0000-0002-5293-0256</orcidid><orcidid>https://orcid.org/0000-0002-1834-4173</orcidid><orcidid>https://orcid.org/0000-0002-7411-0734</orcidid><orcidid>https://orcid.org/0000-0001-7852-3811</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-12, Vol.125 (24), p.246102-246102, Article 246102 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2476568500 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Crack propagation Crack tips Cracks Elastic deformation Fracture mechanics Fracture toughness Healing Real time Rhenium Scanning electron microscopy Scanning transmission electron microscopy Strain Transmission electron microscopy Unit cell |
title | In Situ Scanning Transmission Electron Microscopy Observations of Fracture at the Atomic Scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%C2%A0Situ%20Scanning%20Transmission%20Electron%20Microscopy%20Observations%20of%20Fracture%20at%20the%20Atomic%20Scale&rft.jtitle=Physical%20review%20letters&rft.au=Huang,%20Lingli&rft.date=2020-12-11&rft.volume=125&rft.issue=24&rft.spage=246102&rft.epage=246102&rft.pages=246102-246102&rft.artnum=246102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.125.246102&rft_dat=%3Cproquest_cross%3E2471032183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471032183&rft_id=info:pmid/33412019&rfr_iscdi=true |