Thermalization of a Trapped One-Dimensional Bose Gas via Diffusion
For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the presence of the external potential, the inevitable diffusive rearrangements between the quas...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-12, Vol.125 (24), p.240604-240604, Article 240604 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 240604 |
---|---|
container_issue | 24 |
container_start_page | 240604 |
container_title | Physical review letters |
container_volume | 125 |
creator | Bastianello, Alvise De Luca, Andrea Doyon, Benjamin De Nardis, Jacopo |
description | For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the presence of the external potential, the inevitable diffusive rearrangements between the quasiparticles, quantified by the diffusion constants of the gas, eventually lead the system to thermalize at late times. We show that the full thermalizing dynamics can be described by the generalized hydrodynamics with diffusion and force terms, and we compare these predictions to numerical simulations. Finally, we provide an explanation for the slow thermalization rates observed in numerical and experimental settings: the hydrodynamics of integrable models is characterized by a continuity of modes, which can have arbitrarily small diffusion coefficients. As a consequence, the approach to thermalization can display prethermal plateau and relaxation dynamics with long polynomial finite-time corrections. |
doi_str_mv | 10.1103/PhysRevLett.125.240604 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2476568147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471031240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-cfdf59c018f729a94ffd87b5ca1bff33ba6056c2045634ebe88db8df5d7ed3c93</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMoun78BSl4EaTrTJM27VHXT1hQZD2XNJ1gpG3WplX01xtdFfHkaQ7zvAPzvIztI0wRgR_fPrz6O3qe0zBMMUmniYAMxBqbIMgilohinU0AOMYFgNxi294_AgAmWb7JtjgXmADyCTtdPFDfqsa-qcG6LnImUtGiV8sl1dFNR_GZbanzYaWa6NR5ii6Vj56tis6sMePHYpdtGNV42vuaO-z-4nwxu4rnN5fXs5N5rHmRDLE2tUkLDZgbmRSqEMbUuaxSrbAyhvNKZZBmOgGRZlxQRXleV3nI1JJqrgu-ww5Xd5e9exrJD2VrvaamUR250ZeJkFma5ShkQA_-oI9u7MMLn1Twh8FXoLIVpXvnfU-mXPa2Vf1riVB-WC5_WS6D5XJlOQT3v86PVUv1T-xbawDyFfBClTNeW-o0_WChh7SQmGKoJlQ0s8On-5kbuyFEj_4f5e9ylZtX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471031240</pqid></control><display><type>article</type><title>Thermalization of a Trapped One-Dimensional Bose Gas via Diffusion</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Bastianello, Alvise ; De Luca, Andrea ; Doyon, Benjamin ; De Nardis, Jacopo</creator><creatorcontrib>Bastianello, Alvise ; De Luca, Andrea ; Doyon, Benjamin ; De Nardis, Jacopo</creatorcontrib><description>For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the presence of the external potential, the inevitable diffusive rearrangements between the quasiparticles, quantified by the diffusion constants of the gas, eventually lead the system to thermalize at late times. We show that the full thermalizing dynamics can be described by the generalized hydrodynamics with diffusion and force terms, and we compare these predictions to numerical simulations. Finally, we provide an explanation for the slow thermalization rates observed in numerical and experimental settings: the hydrodynamics of integrable models is characterized by a continuity of modes, which can have arbitrarily small diffusion coefficients. As a consequence, the approach to thermalization can display prethermal plateau and relaxation dynamics with long polynomial finite-time corrections.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.125.240604</identifier><identifier>PMID: 33412013</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Bosons ; Computational fluid dynamics ; Continuity (mathematics) ; Diffusion ; Elementary excitations ; Fluid flow ; Fluid mechanics ; Hydrodynamics ; Mathematical models ; Numerical prediction ; Physical Sciences ; Physics ; Physics, Multidisciplinary ; Polynomials ; Science & Technology ; Thermalization (energy absorption)</subject><ispartof>Physical review letters, 2020-12, Vol.125 (24), p.240604-240604, Article 240604</ispartof><rights>Copyright American Physical Society Dec 11, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>63</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000597151900003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c392t-cfdf59c018f729a94ffd87b5ca1bff33ba6056c2045634ebe88db8df5d7ed3c93</citedby><cites>FETCH-LOGICAL-c392t-cfdf59c018f729a94ffd87b5ca1bff33ba6056c2045634ebe88db8df5d7ed3c93</cites><orcidid>0000-0001-7877-0329 ; 0000-0003-3441-671X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33412013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bastianello, Alvise</creatorcontrib><creatorcontrib>De Luca, Andrea</creatorcontrib><creatorcontrib>Doyon, Benjamin</creatorcontrib><creatorcontrib>De Nardis, Jacopo</creatorcontrib><title>Thermalization of a Trapped One-Dimensional Bose Gas via Diffusion</title><title>Physical review letters</title><addtitle>PHYS REV LETT</addtitle><addtitle>Phys Rev Lett</addtitle><description>For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the presence of the external potential, the inevitable diffusive rearrangements between the quasiparticles, quantified by the diffusion constants of the gas, eventually lead the system to thermalize at late times. We show that the full thermalizing dynamics can be described by the generalized hydrodynamics with diffusion and force terms, and we compare these predictions to numerical simulations. Finally, we provide an explanation for the slow thermalization rates observed in numerical and experimental settings: the hydrodynamics of integrable models is characterized by a continuity of modes, which can have arbitrarily small diffusion coefficients. As a consequence, the approach to thermalization can display prethermal plateau and relaxation dynamics with long polynomial finite-time corrections.</description><subject>Bosons</subject><subject>Computational fluid dynamics</subject><subject>Continuity (mathematics)</subject><subject>Diffusion</subject><subject>Elementary excitations</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Numerical prediction</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Multidisciplinary</subject><subject>Polynomials</subject><subject>Science & Technology</subject><subject>Thermalization (energy absorption)</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkU1LxDAQhoMoun78BSl4EaTrTJM27VHXT1hQZD2XNJ1gpG3WplX01xtdFfHkaQ7zvAPzvIztI0wRgR_fPrz6O3qe0zBMMUmniYAMxBqbIMgilohinU0AOMYFgNxi294_AgAmWb7JtjgXmADyCTtdPFDfqsa-qcG6LnImUtGiV8sl1dFNR_GZbanzYaWa6NR5ii6Vj56tis6sMePHYpdtGNV42vuaO-z-4nwxu4rnN5fXs5N5rHmRDLE2tUkLDZgbmRSqEMbUuaxSrbAyhvNKZZBmOgGRZlxQRXleV3nI1JJqrgu-ww5Xd5e9exrJD2VrvaamUR250ZeJkFma5ShkQA_-oI9u7MMLn1Twh8FXoLIVpXvnfU-mXPa2Vf1riVB-WC5_WS6D5XJlOQT3v86PVUv1T-xbawDyFfBClTNeW-o0_WChh7SQmGKoJlQ0s8On-5kbuyFEj_4f5e9ylZtX</recordid><startdate>20201211</startdate><enddate>20201211</enddate><creator>Bastianello, Alvise</creator><creator>De Luca, Andrea</creator><creator>Doyon, Benjamin</creator><creator>De Nardis, Jacopo</creator><general>Amer Physical Soc</general><general>American Physical Society</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7877-0329</orcidid><orcidid>https://orcid.org/0000-0003-3441-671X</orcidid></search><sort><creationdate>20201211</creationdate><title>Thermalization of a Trapped One-Dimensional Bose Gas via Diffusion</title><author>Bastianello, Alvise ; De Luca, Andrea ; Doyon, Benjamin ; De Nardis, Jacopo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-cfdf59c018f729a94ffd87b5ca1bff33ba6056c2045634ebe88db8df5d7ed3c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bosons</topic><topic>Computational fluid dynamics</topic><topic>Continuity (mathematics)</topic><topic>Diffusion</topic><topic>Elementary excitations</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Numerical prediction</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Multidisciplinary</topic><topic>Polynomials</topic><topic>Science & Technology</topic><topic>Thermalization (energy absorption)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastianello, Alvise</creatorcontrib><creatorcontrib>De Luca, Andrea</creatorcontrib><creatorcontrib>Doyon, Benjamin</creatorcontrib><creatorcontrib>De Nardis, Jacopo</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastianello, Alvise</au><au>De Luca, Andrea</au><au>Doyon, Benjamin</au><au>De Nardis, Jacopo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermalization of a Trapped One-Dimensional Bose Gas via Diffusion</atitle><jtitle>Physical review letters</jtitle><stitle>PHYS REV LETT</stitle><addtitle>Phys Rev Lett</addtitle><date>2020-12-11</date><risdate>2020</risdate><volume>125</volume><issue>24</issue><spage>240604</spage><epage>240604</epage><pages>240604-240604</pages><artnum>240604</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the presence of the external potential, the inevitable diffusive rearrangements between the quasiparticles, quantified by the diffusion constants of the gas, eventually lead the system to thermalize at late times. We show that the full thermalizing dynamics can be described by the generalized hydrodynamics with diffusion and force terms, and we compare these predictions to numerical simulations. Finally, we provide an explanation for the slow thermalization rates observed in numerical and experimental settings: the hydrodynamics of integrable models is characterized by a continuity of modes, which can have arbitrarily small diffusion coefficients. As a consequence, the approach to thermalization can display prethermal plateau and relaxation dynamics with long polynomial finite-time corrections.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><pmid>33412013</pmid><doi>10.1103/PhysRevLett.125.240604</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7877-0329</orcidid><orcidid>https://orcid.org/0000-0003-3441-671X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-12, Vol.125 (24), p.240604-240604, Article 240604 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2476568147 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Bosons Computational fluid dynamics Continuity (mathematics) Diffusion Elementary excitations Fluid flow Fluid mechanics Hydrodynamics Mathematical models Numerical prediction Physical Sciences Physics Physics, Multidisciplinary Polynomials Science & Technology Thermalization (energy absorption) |
title | Thermalization of a Trapped One-Dimensional Bose Gas via Diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermalization%20of%20a%20Trapped%20One-Dimensional%20Bose%20Gas%20via%20Diffusion&rft.jtitle=Physical%20review%20letters&rft.au=Bastianello,%20Alvise&rft.date=2020-12-11&rft.volume=125&rft.issue=24&rft.spage=240604&rft.epage=240604&rft.pages=240604-240604&rft.artnum=240604&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.125.240604&rft_dat=%3Cproquest_cross%3E2471031240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471031240&rft_id=info:pmid/33412013&rfr_iscdi=true |