Interlayer Exciton Transport in MoSe2/WSe2 Heterostructures
A moiré superlattice formed by stacking two lattice mismatched transition metal dichalcogenide monolayers, functions as a diffusion barrier that affects the energy transport and dynamics of interlayer excitons (electron and hole spatially concentrated in different monolayers). In this work, we expe...
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-01, Vol.15 (1), p.1539-1547 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1547 |
---|---|
container_issue | 1 |
container_start_page | 1539 |
container_title | ACS nano |
container_volume | 15 |
creator | Li, Zidong Lu, Xiaobo Cordovilla Leon, Darwin F Lyu, Zhengyang Xie, Hongchao Hou, Jize Lu, Yanzhao Guo, Xiaoyu Kaczmarek, Austin Taniguchi, Takashi Watanabe, Kenji Zhao, Liuyan Yang, Li Deotare, Parag B |
description | A moiré superlattice formed by stacking two lattice mismatched transition metal dichalcogenide monolayers, functions as a diffusion barrier that affects the energy transport and dynamics of interlayer excitons (electron and hole spatially concentrated in different monolayers). In this work, we experimentally quantify the diffusion barrier experienced by interlayer excitons in hexagonal boron nitride-encapsulated molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterostructures with different twist angles. We observe the localization of interlayer excitons at low temperature and the temperature-activated diffusivity as a function of twist angle and hence attribute it to the deep periodic potentials arising from the moiré superlattice. We further support the observations with theoretical calculations, Monte Carlo simulations, and a three-level model that represents the exciton dynamics at various temperatures. |
doi_str_mv | 10.1021/acsnano.0c08981 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2476565664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476565664</sourcerecordid><originalsourceid>FETCH-LOGICAL-a220t-d762548be41969b993f6517442c14e0b5fa86f26a67ad4440fab28c97305c0af3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKtnr3sUZNtJNp94ktLaQsWDFb2FbJqFLWtSkyzov3eliwzMzOHh5eVB6BbDDAPBc2OTNz7MwIJUEp-hCVYVL0Hyj_P_n-FLdJXSAYAJKfgEPWx8drEzPy4Wy2_b5uCLXTQ-HUPMReuL5_DqyPx9WMXaDWhIOfY299Gla3TRmC65m_FO0dtquVusy-3L02bxuC0NIZDLveCEUVk7ihVXtVJVwxkWlBKLqYOaNUbyhnDDhdlTSqExNZFWiQqYBdNUU3R3yj3G8NW7lPVnm6zrOuNd6JMmVHA2DKcDen9CBxv6EProh2Iag_5TpEdFelRU_QLmiVpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476565664</pqid></control><display><type>article</type><title>Interlayer Exciton Transport in MoSe2/WSe2 Heterostructures</title><source>ACS Publications</source><creator>Li, Zidong ; Lu, Xiaobo ; Cordovilla Leon, Darwin F ; Lyu, Zhengyang ; Xie, Hongchao ; Hou, Jize ; Lu, Yanzhao ; Guo, Xiaoyu ; Kaczmarek, Austin ; Taniguchi, Takashi ; Watanabe, Kenji ; Zhao, Liuyan ; Yang, Li ; Deotare, Parag B</creator><creatorcontrib>Li, Zidong ; Lu, Xiaobo ; Cordovilla Leon, Darwin F ; Lyu, Zhengyang ; Xie, Hongchao ; Hou, Jize ; Lu, Yanzhao ; Guo, Xiaoyu ; Kaczmarek, Austin ; Taniguchi, Takashi ; Watanabe, Kenji ; Zhao, Liuyan ; Yang, Li ; Deotare, Parag B</creatorcontrib><description>A moiré superlattice formed by stacking two lattice mismatched transition metal dichalcogenide monolayers, functions as a diffusion barrier that affects the energy transport and dynamics of interlayer excitons (electron and hole spatially concentrated in different monolayers). In this work, we experimentally quantify the diffusion barrier experienced by interlayer excitons in hexagonal boron nitride-encapsulated molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterostructures with different twist angles. We observe the localization of interlayer excitons at low temperature and the temperature-activated diffusivity as a function of twist angle and hence attribute it to the deep periodic potentials arising from the moiré superlattice. We further support the observations with theoretical calculations, Monte Carlo simulations, and a three-level model that represents the exciton dynamics at various temperatures.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c08981</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2021-01, Vol.15 (1), p.1539-1547</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9512-3537 ; 0000-0002-0984-9778 ; 0000-0002-9867-7380 ; 0000-0002-8611-6359 ; 0000-0002-1467-3105 ; 0000-0003-3701-8119 ; 0000-0001-8525-9852</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c08981$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c08981$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Li, Zidong</creatorcontrib><creatorcontrib>Lu, Xiaobo</creatorcontrib><creatorcontrib>Cordovilla Leon, Darwin F</creatorcontrib><creatorcontrib>Lyu, Zhengyang</creatorcontrib><creatorcontrib>Xie, Hongchao</creatorcontrib><creatorcontrib>Hou, Jize</creatorcontrib><creatorcontrib>Lu, Yanzhao</creatorcontrib><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Kaczmarek, Austin</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Zhao, Liuyan</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Deotare, Parag B</creatorcontrib><title>Interlayer Exciton Transport in MoSe2/WSe2 Heterostructures</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>A moiré superlattice formed by stacking two lattice mismatched transition metal dichalcogenide monolayers, functions as a diffusion barrier that affects the energy transport and dynamics of interlayer excitons (electron and hole spatially concentrated in different monolayers). In this work, we experimentally quantify the diffusion barrier experienced by interlayer excitons in hexagonal boron nitride-encapsulated molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterostructures with different twist angles. We observe the localization of interlayer excitons at low temperature and the temperature-activated diffusivity as a function of twist angle and hence attribute it to the deep periodic potentials arising from the moiré superlattice. We further support the observations with theoretical calculations, Monte Carlo simulations, and a three-level model that represents the exciton dynamics at various temperatures.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKtnr3sUZNtJNp94ktLaQsWDFb2FbJqFLWtSkyzov3eliwzMzOHh5eVB6BbDDAPBc2OTNz7MwIJUEp-hCVYVL0Hyj_P_n-FLdJXSAYAJKfgEPWx8drEzPy4Wy2_b5uCLXTQ-HUPMReuL5_DqyPx9WMXaDWhIOfY299Gla3TRmC65m_FO0dtquVusy-3L02bxuC0NIZDLveCEUVk7ihVXtVJVwxkWlBKLqYOaNUbyhnDDhdlTSqExNZFWiQqYBdNUU3R3yj3G8NW7lPVnm6zrOuNd6JMmVHA2DKcDen9CBxv6EProh2Iag_5TpEdFelRU_QLmiVpk</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Li, Zidong</creator><creator>Lu, Xiaobo</creator><creator>Cordovilla Leon, Darwin F</creator><creator>Lyu, Zhengyang</creator><creator>Xie, Hongchao</creator><creator>Hou, Jize</creator><creator>Lu, Yanzhao</creator><creator>Guo, Xiaoyu</creator><creator>Kaczmarek, Austin</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Zhao, Liuyan</creator><creator>Yang, Li</creator><creator>Deotare, Parag B</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9512-3537</orcidid><orcidid>https://orcid.org/0000-0002-0984-9778</orcidid><orcidid>https://orcid.org/0000-0002-9867-7380</orcidid><orcidid>https://orcid.org/0000-0002-8611-6359</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-8525-9852</orcidid></search><sort><creationdate>20210126</creationdate><title>Interlayer Exciton Transport in MoSe2/WSe2 Heterostructures</title><author>Li, Zidong ; Lu, Xiaobo ; Cordovilla Leon, Darwin F ; Lyu, Zhengyang ; Xie, Hongchao ; Hou, Jize ; Lu, Yanzhao ; Guo, Xiaoyu ; Kaczmarek, Austin ; Taniguchi, Takashi ; Watanabe, Kenji ; Zhao, Liuyan ; Yang, Li ; Deotare, Parag B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a220t-d762548be41969b993f6517442c14e0b5fa86f26a67ad4440fab28c97305c0af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zidong</creatorcontrib><creatorcontrib>Lu, Xiaobo</creatorcontrib><creatorcontrib>Cordovilla Leon, Darwin F</creatorcontrib><creatorcontrib>Lyu, Zhengyang</creatorcontrib><creatorcontrib>Xie, Hongchao</creatorcontrib><creatorcontrib>Hou, Jize</creatorcontrib><creatorcontrib>Lu, Yanzhao</creatorcontrib><creatorcontrib>Guo, Xiaoyu</creatorcontrib><creatorcontrib>Kaczmarek, Austin</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Zhao, Liuyan</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Deotare, Parag B</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zidong</au><au>Lu, Xiaobo</au><au>Cordovilla Leon, Darwin F</au><au>Lyu, Zhengyang</au><au>Xie, Hongchao</au><au>Hou, Jize</au><au>Lu, Yanzhao</au><au>Guo, Xiaoyu</au><au>Kaczmarek, Austin</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Zhao, Liuyan</au><au>Yang, Li</au><au>Deotare, Parag B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interlayer Exciton Transport in MoSe2/WSe2 Heterostructures</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-01-26</date><risdate>2021</risdate><volume>15</volume><issue>1</issue><spage>1539</spage><epage>1547</epage><pages>1539-1547</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>A moiré superlattice formed by stacking two lattice mismatched transition metal dichalcogenide monolayers, functions as a diffusion barrier that affects the energy transport and dynamics of interlayer excitons (electron and hole spatially concentrated in different monolayers). In this work, we experimentally quantify the diffusion barrier experienced by interlayer excitons in hexagonal boron nitride-encapsulated molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterostructures with different twist angles. We observe the localization of interlayer excitons at low temperature and the temperature-activated diffusivity as a function of twist angle and hence attribute it to the deep periodic potentials arising from the moiré superlattice. We further support the observations with theoretical calculations, Monte Carlo simulations, and a three-level model that represents the exciton dynamics at various temperatures.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.0c08981</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9512-3537</orcidid><orcidid>https://orcid.org/0000-0002-0984-9778</orcidid><orcidid>https://orcid.org/0000-0002-9867-7380</orcidid><orcidid>https://orcid.org/0000-0002-8611-6359</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-8525-9852</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2021-01, Vol.15 (1), p.1539-1547 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2476565664 |
source | ACS Publications |
title | Interlayer Exciton Transport in MoSe2/WSe2 Heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interlayer%20Exciton%20Transport%20in%20MoSe2/WSe2%20Heterostructures&rft.jtitle=ACS%20nano&rft.au=Li,%20Zidong&rft.date=2021-01-26&rft.volume=15&rft.issue=1&rft.spage=1539&rft.epage=1547&rft.pages=1539-1547&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c08981&rft_dat=%3Cproquest_acs_j%3E2476565664%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476565664&rft_id=info:pmid/&rfr_iscdi=true |