D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction
The severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein is the target of vaccine design efforts to end the coronavirus disease 2019 (COVID-19) pandemic. Despite a low mutation rate, isolates with the D614G substitution in the S protein appeared early during the pandemic and are now...
Gespeichert in:
Veröffentlicht in: | Cell reports (Cambridge) 2021-01, Vol.34 (2), p.108630-108630, Article 108630 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108630 |
---|---|
container_issue | 2 |
container_start_page | 108630 |
container_title | Cell reports (Cambridge) |
container_volume | 34 |
creator | Gobeil, Sophie M.-C. Janowska, Katarzyna McDowell, Shana Mansouri, Katayoun Parks, Robert Manne, Kartik Stalls, Victoria Kopp, Megan F. Henderson, Rory Edwards, Robert J. Haynes, Barton F. Acharya, Priyamvada |
description | The severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein is the target of vaccine design efforts to end the coronavirus disease 2019 (COVID-19) pandemic. Despite a low mutation rate, isolates with the D614G substitution in the S protein appeared early during the pandemic and are now the dominant form worldwide. Here, we explore S conformational changes and the effects of the D614G mutation on a soluble S ectodomain construct. Cryoelectron microscopy (cryo-EM) structures reveal altered receptor binding domain (RBD) disposition; antigenicity and proteolysis experiments reveal structural changes and enhanced furin cleavage efficiency of the G614 variant. Furthermore, furin cleavage alters the up/down ratio of the RBDs in the G614 S ectodomain, demonstrating an allosteric effect on RBD positioning triggered by changes in the SD2 region, which harbors residue 614 and the furin cleavage site. Our results elucidate SARS-CoV-2 S conformational landscape and allostery and have implications for vaccine design.
[Display omitted]
•SARS-CoV-2 S 2P mutations do not impact its structure, stability, or antigenicity•D614G mutation increases RBD “up” state and enhances S1/S2 junction proteolysis•Structure and antigenicity reveal allostery between the S1/S2 junction and RBD•SD2 anchors the mobile RBD and NTD, separating large S1 subunit motions from S2
SARS-CoV-2 spike undergoes large conformational changes during cell fusion. Gobeil et al. identify a subdomain anchor that limits large motions in the receptor binding subunit of the pre-fusion spike from propagating to its fusion subunit. They demonstrate that the D614G mutation increases the rate of furin cleavage, which may impact infectivity. |
doi_str_mv | 10.1016/j.celrep.2020.108630 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2476564462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124720316193</els_id><doaj_id>oai_doaj_org_article_efcb6d3fcad74ce58bb8ce3f7be2dd83</doaj_id><sourcerecordid>2476564462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c651t-530aab408b7aaf004cd7b83db94dfe5addbedb966fe0c7c3a3f75aa52516646b3</originalsourceid><addsrcrecordid>eNqNkltv0zAYhiMEYtPYP0DIl0gonU9x0hukKYwxNASiwK3lw5fWJY2L7RTx73GXUrYbhG9sf37f14fHRfGc4BnBRFysZwb6ANsZxXRfagTDj4pTSgkpCeX143vjk-I8xjXOTWBC5vxpccIYJ3XDqtNi9UYQfo0-jEkl5wd02ScIES0uPy_K1n8rKVps3XdArR86HzaTSA0WXQ0rNRiI6FPwCVTMkh7UTi0BqYTSCtCCXCwoej8OZm96VjzpVB_h_NCfFV_fXn1p35W3H69v2svb0oiKpLJiWCnNcaNrpTqMubG1bpjVc247qJS1GvJEiA6wqQ1TrKsrpSpaESG40OysuJlyrVdruQ1uo8Iv6ZWTdwUfllKF5EwPEjqjhWWdUbbmBqpG68ZADtRArW1Yzno9ZW1HvQFrYEhB9Q9CH64MbiWXfifrWtAa7wNeHgKC_zFCTHLjYibXqwH8GGWmIyrBuaBZyiepCT7GAN1xG4Llnrlcy4m53DOXE_Nse3H_iEfTH8JZ0EyCn6B9F42DTO0ou_sU9ZywJo9o1brpG7R-HFK2vvp_69_Hgkx35yDIg8O6ACbl53f_vspvDXfgbg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476564462</pqid></control><display><type>article</type><title>D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Gobeil, Sophie M.-C. ; Janowska, Katarzyna ; McDowell, Shana ; Mansouri, Katayoun ; Parks, Robert ; Manne, Kartik ; Stalls, Victoria ; Kopp, Megan F. ; Henderson, Rory ; Edwards, Robert J. ; Haynes, Barton F. ; Acharya, Priyamvada</creator><creatorcontrib>Gobeil, Sophie M.-C. ; Janowska, Katarzyna ; McDowell, Shana ; Mansouri, Katayoun ; Parks, Robert ; Manne, Kartik ; Stalls, Victoria ; Kopp, Megan F. ; Henderson, Rory ; Edwards, Robert J. ; Haynes, Barton F. ; Acharya, Priyamvada</creatorcontrib><description>The severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein is the target of vaccine design efforts to end the coronavirus disease 2019 (COVID-19) pandemic. Despite a low mutation rate, isolates with the D614G substitution in the S protein appeared early during the pandemic and are now the dominant form worldwide. Here, we explore S conformational changes and the effects of the D614G mutation on a soluble S ectodomain construct. Cryoelectron microscopy (cryo-EM) structures reveal altered receptor binding domain (RBD) disposition; antigenicity and proteolysis experiments reveal structural changes and enhanced furin cleavage efficiency of the G614 variant. Furthermore, furin cleavage alters the up/down ratio of the RBDs in the G614 S ectodomain, demonstrating an allosteric effect on RBD positioning triggered by changes in the SD2 region, which harbors residue 614 and the furin cleavage site. Our results elucidate SARS-CoV-2 S conformational landscape and allostery and have implications for vaccine design.
[Display omitted]
•SARS-CoV-2 S 2P mutations do not impact its structure, stability, or antigenicity•D614G mutation increases RBD “up” state and enhances S1/S2 junction proteolysis•Structure and antigenicity reveal allostery between the S1/S2 junction and RBD•SD2 anchors the mobile RBD and NTD, separating large S1 subunit motions from S2
SARS-CoV-2 spike undergoes large conformational changes during cell fusion. Gobeil et al. identify a subdomain anchor that limits large motions in the receptor binding subunit of the pre-fusion spike from propagating to its fusion subunit. They demonstrate that the D614G mutation increases the rate of furin cleavage, which may impact infectivity.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2020.108630</identifier><identifier>PMID: 33417835</identifier><language>eng</language><publisher>CAMBRIDGE: Elsevier Inc</publisher><subject>allostery ; Cell Biology ; COVID-19 ; COVID-19 - pathology ; COVID-19 - virology ; cryo-EM ; Cryoelectron Microscopy ; D614G ; furin cleavage ; Humans ; Immunogenicity, Vaccine ; Life Sciences & Biomedicine ; Molecular Dynamics Simulation ; Mutation ; Peptide Hydrolases - metabolism ; Protein Domains ; Protein Stability ; Protein Structure, Quaternary ; Protein Subunits - metabolism ; Proteolysis ; SARS-CoV-2 ; SARS-CoV-2 - isolation & purification ; SARS-CoV-2 - metabolism ; Science & Technology ; spike ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - genetics ; Spike Glycoprotein, Coronavirus - metabolism</subject><ispartof>Cell reports (Cambridge), 2021-01, Vol.34 (2), p.108630-108630, Article 108630</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>164</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000607913800025</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c651t-530aab408b7aaf004cd7b83db94dfe5addbedb966fe0c7c3a3f75aa52516646b3</citedby><cites>FETCH-LOGICAL-c651t-530aab408b7aaf004cd7b83db94dfe5addbedb966fe0c7c3a3f75aa52516646b3</cites><orcidid>0000-0002-1878-0581 ; 0000-0001-6232-7330 ; 0000-0002-1112-6974 ; 0000-0002-0089-277X ; 0000-0002-7218-4852 ; 0000-0003-4446-1194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,866,887,2104,2116,27931,27932,39265</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33417835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gobeil, Sophie M.-C.</creatorcontrib><creatorcontrib>Janowska, Katarzyna</creatorcontrib><creatorcontrib>McDowell, Shana</creatorcontrib><creatorcontrib>Mansouri, Katayoun</creatorcontrib><creatorcontrib>Parks, Robert</creatorcontrib><creatorcontrib>Manne, Kartik</creatorcontrib><creatorcontrib>Stalls, Victoria</creatorcontrib><creatorcontrib>Kopp, Megan F.</creatorcontrib><creatorcontrib>Henderson, Rory</creatorcontrib><creatorcontrib>Edwards, Robert J.</creatorcontrib><creatorcontrib>Haynes, Barton F.</creatorcontrib><creatorcontrib>Acharya, Priyamvada</creatorcontrib><title>D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction</title><title>Cell reports (Cambridge)</title><addtitle>CELL REP</addtitle><addtitle>Cell Rep</addtitle><description>The severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein is the target of vaccine design efforts to end the coronavirus disease 2019 (COVID-19) pandemic. Despite a low mutation rate, isolates with the D614G substitution in the S protein appeared early during the pandemic and are now the dominant form worldwide. Here, we explore S conformational changes and the effects of the D614G mutation on a soluble S ectodomain construct. Cryoelectron microscopy (cryo-EM) structures reveal altered receptor binding domain (RBD) disposition; antigenicity and proteolysis experiments reveal structural changes and enhanced furin cleavage efficiency of the G614 variant. Furthermore, furin cleavage alters the up/down ratio of the RBDs in the G614 S ectodomain, demonstrating an allosteric effect on RBD positioning triggered by changes in the SD2 region, which harbors residue 614 and the furin cleavage site. Our results elucidate SARS-CoV-2 S conformational landscape and allostery and have implications for vaccine design.
[Display omitted]
•SARS-CoV-2 S 2P mutations do not impact its structure, stability, or antigenicity•D614G mutation increases RBD “up” state and enhances S1/S2 junction proteolysis•Structure and antigenicity reveal allostery between the S1/S2 junction and RBD•SD2 anchors the mobile RBD and NTD, separating large S1 subunit motions from S2
SARS-CoV-2 spike undergoes large conformational changes during cell fusion. Gobeil et al. identify a subdomain anchor that limits large motions in the receptor binding subunit of the pre-fusion spike from propagating to its fusion subunit. They demonstrate that the D614G mutation increases the rate of furin cleavage, which may impact infectivity.</description><subject>allostery</subject><subject>Cell Biology</subject><subject>COVID-19</subject><subject>COVID-19 - pathology</subject><subject>COVID-19 - virology</subject><subject>cryo-EM</subject><subject>Cryoelectron Microscopy</subject><subject>D614G</subject><subject>furin cleavage</subject><subject>Humans</subject><subject>Immunogenicity, Vaccine</subject><subject>Life Sciences & Biomedicine</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Protein Domains</subject><subject>Protein Stability</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Subunits - metabolism</subject><subject>Proteolysis</subject><subject>SARS-CoV-2</subject><subject>SARS-CoV-2 - isolation & purification</subject><subject>SARS-CoV-2 - metabolism</subject><subject>Science & Technology</subject><subject>spike</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - genetics</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltv0zAYhiMEYtPYP0DIl0gonU9x0hukKYwxNASiwK3lw5fWJY2L7RTx73GXUrYbhG9sf37f14fHRfGc4BnBRFysZwb6ANsZxXRfagTDj4pTSgkpCeX143vjk-I8xjXOTWBC5vxpccIYJ3XDqtNi9UYQfo0-jEkl5wd02ScIES0uPy_K1n8rKVps3XdArR86HzaTSA0WXQ0rNRiI6FPwCVTMkh7UTi0BqYTSCtCCXCwoej8OZm96VjzpVB_h_NCfFV_fXn1p35W3H69v2svb0oiKpLJiWCnNcaNrpTqMubG1bpjVc247qJS1GvJEiA6wqQ1TrKsrpSpaESG40OysuJlyrVdruQ1uo8Iv6ZWTdwUfllKF5EwPEjqjhWWdUbbmBqpG68ZADtRArW1Yzno9ZW1HvQFrYEhB9Q9CH64MbiWXfifrWtAa7wNeHgKC_zFCTHLjYibXqwH8GGWmIyrBuaBZyiepCT7GAN1xG4Llnrlcy4m53DOXE_Nse3H_iEfTH8JZ0EyCn6B9F42DTO0ou_sU9ZywJo9o1brpG7R-HFK2vvp_69_Hgkx35yDIg8O6ACbl53f_vspvDXfgbg</recordid><startdate>20210112</startdate><enddate>20210112</enddate><creator>Gobeil, Sophie M.-C.</creator><creator>Janowska, Katarzyna</creator><creator>McDowell, Shana</creator><creator>Mansouri, Katayoun</creator><creator>Parks, Robert</creator><creator>Manne, Kartik</creator><creator>Stalls, Victoria</creator><creator>Kopp, Megan F.</creator><creator>Henderson, Rory</creator><creator>Edwards, Robert J.</creator><creator>Haynes, Barton F.</creator><creator>Acharya, Priyamvada</creator><general>Elsevier Inc</general><general>Elsevier</general><general>The Author(s)</general><scope>6I.</scope><scope>AAFTH</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1878-0581</orcidid><orcidid>https://orcid.org/0000-0001-6232-7330</orcidid><orcidid>https://orcid.org/0000-0002-1112-6974</orcidid><orcidid>https://orcid.org/0000-0002-0089-277X</orcidid><orcidid>https://orcid.org/0000-0002-7218-4852</orcidid><orcidid>https://orcid.org/0000-0003-4446-1194</orcidid></search><sort><creationdate>20210112</creationdate><title>D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction</title><author>Gobeil, Sophie M.-C. ; Janowska, Katarzyna ; McDowell, Shana ; Mansouri, Katayoun ; Parks, Robert ; Manne, Kartik ; Stalls, Victoria ; Kopp, Megan F. ; Henderson, Rory ; Edwards, Robert J. ; Haynes, Barton F. ; Acharya, Priyamvada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c651t-530aab408b7aaf004cd7b83db94dfe5addbedb966fe0c7c3a3f75aa52516646b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>allostery</topic><topic>Cell Biology</topic><topic>COVID-19</topic><topic>COVID-19 - pathology</topic><topic>COVID-19 - virology</topic><topic>cryo-EM</topic><topic>Cryoelectron Microscopy</topic><topic>D614G</topic><topic>furin cleavage</topic><topic>Humans</topic><topic>Immunogenicity, Vaccine</topic><topic>Life Sciences & Biomedicine</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Protein Domains</topic><topic>Protein Stability</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Subunits - metabolism</topic><topic>Proteolysis</topic><topic>SARS-CoV-2</topic><topic>SARS-CoV-2 - isolation & purification</topic><topic>SARS-CoV-2 - metabolism</topic><topic>Science & Technology</topic><topic>spike</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - genetics</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gobeil, Sophie M.-C.</creatorcontrib><creatorcontrib>Janowska, Katarzyna</creatorcontrib><creatorcontrib>McDowell, Shana</creatorcontrib><creatorcontrib>Mansouri, Katayoun</creatorcontrib><creatorcontrib>Parks, Robert</creatorcontrib><creatorcontrib>Manne, Kartik</creatorcontrib><creatorcontrib>Stalls, Victoria</creatorcontrib><creatorcontrib>Kopp, Megan F.</creatorcontrib><creatorcontrib>Henderson, Rory</creatorcontrib><creatorcontrib>Edwards, Robert J.</creatorcontrib><creatorcontrib>Haynes, Barton F.</creatorcontrib><creatorcontrib>Acharya, Priyamvada</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gobeil, Sophie M.-C.</au><au>Janowska, Katarzyna</au><au>McDowell, Shana</au><au>Mansouri, Katayoun</au><au>Parks, Robert</au><au>Manne, Kartik</au><au>Stalls, Victoria</au><au>Kopp, Megan F.</au><au>Henderson, Rory</au><au>Edwards, Robert J.</au><au>Haynes, Barton F.</au><au>Acharya, Priyamvada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction</atitle><jtitle>Cell reports (Cambridge)</jtitle><stitle>CELL REP</stitle><addtitle>Cell Rep</addtitle><date>2021-01-12</date><risdate>2021</risdate><volume>34</volume><issue>2</issue><spage>108630</spage><epage>108630</epage><pages>108630-108630</pages><artnum>108630</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>The severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein is the target of vaccine design efforts to end the coronavirus disease 2019 (COVID-19) pandemic. Despite a low mutation rate, isolates with the D614G substitution in the S protein appeared early during the pandemic and are now the dominant form worldwide. Here, we explore S conformational changes and the effects of the D614G mutation on a soluble S ectodomain construct. Cryoelectron microscopy (cryo-EM) structures reveal altered receptor binding domain (RBD) disposition; antigenicity and proteolysis experiments reveal structural changes and enhanced furin cleavage efficiency of the G614 variant. Furthermore, furin cleavage alters the up/down ratio of the RBDs in the G614 S ectodomain, demonstrating an allosteric effect on RBD positioning triggered by changes in the SD2 region, which harbors residue 614 and the furin cleavage site. Our results elucidate SARS-CoV-2 S conformational landscape and allostery and have implications for vaccine design.
[Display omitted]
•SARS-CoV-2 S 2P mutations do not impact its structure, stability, or antigenicity•D614G mutation increases RBD “up” state and enhances S1/S2 junction proteolysis•Structure and antigenicity reveal allostery between the S1/S2 junction and RBD•SD2 anchors the mobile RBD and NTD, separating large S1 subunit motions from S2
SARS-CoV-2 spike undergoes large conformational changes during cell fusion. Gobeil et al. identify a subdomain anchor that limits large motions in the receptor binding subunit of the pre-fusion spike from propagating to its fusion subunit. They demonstrate that the D614G mutation increases the rate of furin cleavage, which may impact infectivity.</abstract><cop>CAMBRIDGE</cop><pub>Elsevier Inc</pub><pmid>33417835</pmid><doi>10.1016/j.celrep.2020.108630</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1878-0581</orcidid><orcidid>https://orcid.org/0000-0001-6232-7330</orcidid><orcidid>https://orcid.org/0000-0002-1112-6974</orcidid><orcidid>https://orcid.org/0000-0002-0089-277X</orcidid><orcidid>https://orcid.org/0000-0002-7218-4852</orcidid><orcidid>https://orcid.org/0000-0003-4446-1194</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2021-01, Vol.34 (2), p.108630-108630, Article 108630 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_proquest_miscellaneous_2476564462 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | allostery Cell Biology COVID-19 COVID-19 - pathology COVID-19 - virology cryo-EM Cryoelectron Microscopy D614G furin cleavage Humans Immunogenicity, Vaccine Life Sciences & Biomedicine Molecular Dynamics Simulation Mutation Peptide Hydrolases - metabolism Protein Domains Protein Stability Protein Structure, Quaternary Protein Subunits - metabolism Proteolysis SARS-CoV-2 SARS-CoV-2 - isolation & purification SARS-CoV-2 - metabolism Science & Technology spike Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - genetics Spike Glycoprotein, Coronavirus - metabolism |
title | D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T02%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D614G%20Mutation%20Alters%20SARS-CoV-2%20Spike%20Conformation%20and%20Enhances%20Protease%20Cleavage%20at%20the%20S1/S2%20Junction&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Gobeil,%20Sophie%20M.-C.&rft.date=2021-01-12&rft.volume=34&rft.issue=2&rft.spage=108630&rft.epage=108630&rft.pages=108630-108630&rft.artnum=108630&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2020.108630&rft_dat=%3Cproquest_pubme%3E2476564462%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476564462&rft_id=info:pmid/33417835&rft_els_id=S2211124720316193&rft_doaj_id=oai_doaj_org_article_efcb6d3fcad74ce58bb8ce3f7be2dd83&rfr_iscdi=true |