Multilabel Classification Models for the Prediction of Cross-Coupling Reaction Conditions

Machine-learned ranking models have been developed for the prediction of substrate-specific cross-coupling reaction conditions. Data sets of published reactions were curated for Suzuki, Negishi, and C–N couplings, as well as Pauson–Khand reactions. String, descriptor, and graph encodings were tested...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2021-01, Vol.61 (1), p.156-166
Hauptverfasser: Maser, Michael R, Cui, Alexander Y, Ryou, Serim, DeLano, Travis J, Yue, Yisong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 1
container_start_page 156
container_title Journal of chemical information and modeling
container_volume 61
creator Maser, Michael R
Cui, Alexander Y
Ryou, Serim
DeLano, Travis J
Yue, Yisong
description Machine-learned ranking models have been developed for the prediction of substrate-specific cross-coupling reaction conditions. Data sets of published reactions were curated for Suzuki, Negishi, and C–N couplings, as well as Pauson–Khand reactions. String, descriptor, and graph encodings were tested as input representations, and models were trained to predict the set of conditions used in a reaction as a binary vector. Unique reagent dictionaries categorized by expert-crafted reaction roles were constructed for each data set, leading to context-aware predictions. We find that relational graph convolutional networks and gradient-boosting machines are very effective for this learning task, and we disclose a novel reaction-level graph attention operation in the top-performing model.
doi_str_mv 10.1021/acs.jcim.0c01234
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2476564234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483640867</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-5c279e30911a1c9ebc3d05e4a0de816aa71f52c75c15b0c49ed28586126f457e3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4Mobk7vnqTgxYOdSfPR5ijFL9hQREFPJU3fakbazKY9-N_brpsHwVNeeJ_fL8mD0CnBc4IjcqW0n6-0qeZYYxJRtoemhDMZSoHf9nczl2KCjrxfYUypFNEhmlDKSMyYnKL3ZWdbY1UONkit8t6URqvWuDpYugKsD0rXBO0nBE8NFEZvNq4M0sZ5H6auW1tTfwTPoMZV6urCDJM_Rgelsh5OtucMvd7evKT34eLx7iG9XoSKYdGGXEexBIolIYpoCbmmBebAFC4gIUKpmJQ80jHXhOdYMwlFlPBEkEiUjMdAZ-hi7F037qsD32aV8RqsVTW4zmcRiwUXrLfTo-d_0JXrmrp_XU8lVDCciLin8Ejp4Y8NlNm6MZVqvjOCs0F71mvPBu3ZVnsfOdsWd3kFxW9g57kHLkdgE91d-m_fD4w_jfc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483640867</pqid></control><display><type>article</type><title>Multilabel Classification Models for the Prediction of Cross-Coupling Reaction Conditions</title><source>ACS Publications</source><creator>Maser, Michael R ; Cui, Alexander Y ; Ryou, Serim ; DeLano, Travis J ; Yue, Yisong</creator><creatorcontrib>Maser, Michael R ; Cui, Alexander Y ; Ryou, Serim ; DeLano, Travis J ; Yue, Yisong</creatorcontrib><description>Machine-learned ranking models have been developed for the prediction of substrate-specific cross-coupling reaction conditions. Data sets of published reactions were curated for Suzuki, Negishi, and C–N couplings, as well as Pauson–Khand reactions. String, descriptor, and graph encodings were tested as input representations, and models were trained to predict the set of conditions used in a reaction as a binary vector. Unique reagent dictionaries categorized by expert-crafted reaction roles were constructed for each data set, leading to context-aware predictions. We find that relational graph convolutional networks and gradient-boosting machines are very effective for this learning task, and we disclose a novel reaction-level graph attention operation in the top-performing model.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.0c01234</identifier><identifier>PMID: 33417449</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical reactions ; Cognitive tasks ; Couplings ; Cross coupling ; Datasets ; Machine Learning and Deep Learning ; Reagents ; Substrates</subject><ispartof>Journal of chemical information and modeling, 2021-01, Vol.61 (1), p.156-166</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 25, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-5c279e30911a1c9ebc3d05e4a0de816aa71f52c75c15b0c49ed28586126f457e3</citedby><cites>FETCH-LOGICAL-a406t-5c279e30911a1c9ebc3d05e4a0de816aa71f52c75c15b0c49ed28586126f457e3</cites><orcidid>0000-0001-8244-9300 ; 0000-0001-7895-7804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.0c01234$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.0c01234$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33417449$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maser, Michael R</creatorcontrib><creatorcontrib>Cui, Alexander Y</creatorcontrib><creatorcontrib>Ryou, Serim</creatorcontrib><creatorcontrib>DeLano, Travis J</creatorcontrib><creatorcontrib>Yue, Yisong</creatorcontrib><title>Multilabel Classification Models for the Prediction of Cross-Coupling Reaction Conditions</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Machine-learned ranking models have been developed for the prediction of substrate-specific cross-coupling reaction conditions. Data sets of published reactions were curated for Suzuki, Negishi, and C–N couplings, as well as Pauson–Khand reactions. String, descriptor, and graph encodings were tested as input representations, and models were trained to predict the set of conditions used in a reaction as a binary vector. Unique reagent dictionaries categorized by expert-crafted reaction roles were constructed for each data set, leading to context-aware predictions. We find that relational graph convolutional networks and gradient-boosting machines are very effective for this learning task, and we disclose a novel reaction-level graph attention operation in the top-performing model.</description><subject>Chemical reactions</subject><subject>Cognitive tasks</subject><subject>Couplings</subject><subject>Cross coupling</subject><subject>Datasets</subject><subject>Machine Learning and Deep Learning</subject><subject>Reagents</subject><subject>Substrates</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYh4Mobk7vnqTgxYOdSfPR5ijFL9hQREFPJU3fakbazKY9-N_brpsHwVNeeJ_fL8mD0CnBc4IjcqW0n6-0qeZYYxJRtoemhDMZSoHf9nczl2KCjrxfYUypFNEhmlDKSMyYnKL3ZWdbY1UONkit8t6URqvWuDpYugKsD0rXBO0nBE8NFEZvNq4M0sZ5H6auW1tTfwTPoMZV6urCDJM_Rgelsh5OtucMvd7evKT34eLx7iG9XoSKYdGGXEexBIolIYpoCbmmBebAFC4gIUKpmJQ80jHXhOdYMwlFlPBEkEiUjMdAZ-hi7F037qsD32aV8RqsVTW4zmcRiwUXrLfTo-d_0JXrmrp_XU8lVDCciLin8Ejp4Y8NlNm6MZVqvjOCs0F71mvPBu3ZVnsfOdsWd3kFxW9g57kHLkdgE91d-m_fD4w_jfc</recordid><startdate>20210125</startdate><enddate>20210125</enddate><creator>Maser, Michael R</creator><creator>Cui, Alexander Y</creator><creator>Ryou, Serim</creator><creator>DeLano, Travis J</creator><creator>Yue, Yisong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8244-9300</orcidid><orcidid>https://orcid.org/0000-0001-7895-7804</orcidid></search><sort><creationdate>20210125</creationdate><title>Multilabel Classification Models for the Prediction of Cross-Coupling Reaction Conditions</title><author>Maser, Michael R ; Cui, Alexander Y ; Ryou, Serim ; DeLano, Travis J ; Yue, Yisong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-5c279e30911a1c9ebc3d05e4a0de816aa71f52c75c15b0c49ed28586126f457e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical reactions</topic><topic>Cognitive tasks</topic><topic>Couplings</topic><topic>Cross coupling</topic><topic>Datasets</topic><topic>Machine Learning and Deep Learning</topic><topic>Reagents</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maser, Michael R</creatorcontrib><creatorcontrib>Cui, Alexander Y</creatorcontrib><creatorcontrib>Ryou, Serim</creatorcontrib><creatorcontrib>DeLano, Travis J</creatorcontrib><creatorcontrib>Yue, Yisong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maser, Michael R</au><au>Cui, Alexander Y</au><au>Ryou, Serim</au><au>DeLano, Travis J</au><au>Yue, Yisong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilabel Classification Models for the Prediction of Cross-Coupling Reaction Conditions</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2021-01-25</date><risdate>2021</risdate><volume>61</volume><issue>1</issue><spage>156</spage><epage>166</epage><pages>156-166</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Machine-learned ranking models have been developed for the prediction of substrate-specific cross-coupling reaction conditions. Data sets of published reactions were curated for Suzuki, Negishi, and C–N couplings, as well as Pauson–Khand reactions. String, descriptor, and graph encodings were tested as input representations, and models were trained to predict the set of conditions used in a reaction as a binary vector. Unique reagent dictionaries categorized by expert-crafted reaction roles were constructed for each data set, leading to context-aware predictions. We find that relational graph convolutional networks and gradient-boosting machines are very effective for this learning task, and we disclose a novel reaction-level graph attention operation in the top-performing model.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33417449</pmid><doi>10.1021/acs.jcim.0c01234</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8244-9300</orcidid><orcidid>https://orcid.org/0000-0001-7895-7804</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2021-01, Vol.61 (1), p.156-166
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2476564234
source ACS Publications
subjects Chemical reactions
Cognitive tasks
Couplings
Cross coupling
Datasets
Machine Learning and Deep Learning
Reagents
Substrates
title Multilabel Classification Models for the Prediction of Cross-Coupling Reaction Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilabel%20Classification%20Models%20for%20the%20Prediction%20of%20Cross-Coupling%20Reaction%20Conditions&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Maser,%20Michael%20R&rft.date=2021-01-25&rft.volume=61&rft.issue=1&rft.spage=156&rft.epage=166&rft.pages=156-166&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.0c01234&rft_dat=%3Cproquest_cross%3E2483640867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483640867&rft_id=info:pmid/33417449&rfr_iscdi=true