Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network
Sudden cardiac death (SCD) is a major cause of death among patients with heart diseases. It occurs mainly due to ventricular tachyarrhythmia (VTA) which includes ventricular tachycardia (VT) and ventricular fibrillation (VF) conditions. The main challenging task is to predict the VTA condition at a...
Gespeichert in:
Veröffentlicht in: | Australasian physical & engineering sciences in medicine 2021-03, Vol.44 (1), p.135-145 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 145 |
---|---|
container_issue | 1 |
container_start_page | 135 |
container_title | Australasian physical & engineering sciences in medicine |
container_volume | 44 |
creator | Sabut, Sukanta Pandey, Om Mishra, B. S. P. Mohanty, Monalisa |
description | Sudden cardiac death (SCD) is a major cause of death among patients with heart diseases. It occurs mainly due to ventricular tachyarrhythmia (VTA) which includes ventricular tachycardia (VT) and ventricular fibrillation (VF) conditions. The main challenging task is to predict the VTA condition at a faster rate and timely application of automatic external defibrillator (AED) for saving lives. In this study, a VF/VT classification scheme has been proposed using a deep neural network (DNN) approach using hybrid time–frequency-based features. Two annotated public domain ECG databases (CUDB and VFDB) were used as training, test, and validation of datasets. The main motivation of this study was to implement a deep learning model for the classification of the VF/VT conditions and compared the results with other standard machine learning algorithms. The signal is decomposed with the wavelet transform, empirical mode decomposition (EMD) and variable mode decomposition (VMD) approaches and twenty-four are extracted to form a hybrid model from a window of length 5 s length. The DNN classifier achieved an accuracy (Acc) of 99.2%, sensitivity (Se) of 98.8%, and specificity (Sp) of 99.3% which is comparatively better than the results of the standard classifier. The proposed algorithm can detect VTA conditions accurately, hence could reduce the rate of misinterpretations by human experts and improves the efficiency of cardiac diagnosis by ECG signal analysis. |
doi_str_mv | 10.1007/s13246-020-00964-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2476564047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476564047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-5aaa1725c8165fc96235cc9d22d49380e1af5ac2e6bc6349bdec4fc3a829293b3</originalsourceid><addsrcrecordid>eNp9kU1uFDEQha0IRKIhF2ARWcqGTYNd_hsvoxAIUqRsYG253dWZDt3uwXYTzY475IacJA4TgsSCVZVUX70qvUfIG87eccbM-8wFSN0wYA1jVssGDsgRaA2NNMK8eO7BHpLjnG8ZY6A4N1q9IodCSG64skdk8wELhjLMkc49_YGxpCEso0_Up7TZlc00eLrkId7Qza5NQ0fLMOGvn_d9wu8LxrBrWp-xoz36siTM1MeOdohbGnFJfqyl3M3p22vysvdjxuOnuiJfP158Ob9srq4_fT4_u2qCMKo0ynvPDaiw5lr1wWoQKgTbAXTSijVD7nvlA6BugxbSth0G2Qfh12DBilasyNu97jbN9cFc3DTkgOPoI85LdiCrBVqy6tKKnP6D3s5LivW7StXLBphhlYI9FdKcc8LebdMw-bRznLnHKNw-ClejcL-jcFCXTp6kl3bC7nnlj_EVEHsg11G8wfT39n9kHwBhQ5YC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496272070</pqid></control><display><type>article</type><title>Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sabut, Sukanta ; Pandey, Om ; Mishra, B. S. P. ; Mohanty, Monalisa</creator><creatorcontrib>Sabut, Sukanta ; Pandey, Om ; Mishra, B. S. P. ; Mohanty, Monalisa</creatorcontrib><description>Sudden cardiac death (SCD) is a major cause of death among patients with heart diseases. It occurs mainly due to ventricular tachyarrhythmia (VTA) which includes ventricular tachycardia (VT) and ventricular fibrillation (VF) conditions. The main challenging task is to predict the VTA condition at a faster rate and timely application of automatic external defibrillator (AED) for saving lives. In this study, a VF/VT classification scheme has been proposed using a deep neural network (DNN) approach using hybrid time–frequency-based features. Two annotated public domain ECG databases (CUDB and VFDB) were used as training, test, and validation of datasets. The main motivation of this study was to implement a deep learning model for the classification of the VF/VT conditions and compared the results with other standard machine learning algorithms. The signal is decomposed with the wavelet transform, empirical mode decomposition (EMD) and variable mode decomposition (VMD) approaches and twenty-four are extracted to form a hybrid model from a window of length 5 s length. The DNN classifier achieved an accuracy (Acc) of 99.2%, sensitivity (Se) of 98.8%, and specificity (Sp) of 99.3% which is comparatively better than the results of the standard classifier. The proposed algorithm can detect VTA conditions accurately, hence could reduce the rate of misinterpretations by human experts and improves the efficiency of cardiac diagnosis by ECG signal analysis.</description><identifier>ISSN: 2662-4729</identifier><identifier>ISSN: 0158-9938</identifier><identifier>EISSN: 2662-4737</identifier><identifier>EISSN: 1879-5447</identifier><identifier>DOI: 10.1007/s13246-020-00964-2</identifier><identifier>PMID: 33417159</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Arrhythmia ; Artificial neural networks ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Classification ; Classifiers ; Decomposition ; Defibrillators ; Empirical analysis ; Fibrillation ; Heart diseases ; Machine learning ; Medical and Radiation Physics ; Neural networks ; Public domain ; Scientific Paper ; Signal analysis ; Tachycardia ; Ventricular fibrillation ; Wavelet transforms</subject><ispartof>Australasian physical & engineering sciences in medicine, 2021-03, Vol.44 (1), p.135-145</ispartof><rights>Australasian College of Physical Scientists and Engineers in Medicine 2021</rights><rights>Australasian College of Physical Scientists and Engineers in Medicine 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-5aaa1725c8165fc96235cc9d22d49380e1af5ac2e6bc6349bdec4fc3a829293b3</citedby><cites>FETCH-LOGICAL-c375t-5aaa1725c8165fc96235cc9d22d49380e1af5ac2e6bc6349bdec4fc3a829293b3</cites><orcidid>0000-0002-0488-8989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13246-020-00964-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13246-020-00964-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33417159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabut, Sukanta</creatorcontrib><creatorcontrib>Pandey, Om</creatorcontrib><creatorcontrib>Mishra, B. S. P.</creatorcontrib><creatorcontrib>Mohanty, Monalisa</creatorcontrib><title>Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network</title><title>Australasian physical & engineering sciences in medicine</title><addtitle>Phys Eng Sci Med</addtitle><addtitle>Phys Eng Sci Med</addtitle><description>Sudden cardiac death (SCD) is a major cause of death among patients with heart diseases. It occurs mainly due to ventricular tachyarrhythmia (VTA) which includes ventricular tachycardia (VT) and ventricular fibrillation (VF) conditions. The main challenging task is to predict the VTA condition at a faster rate and timely application of automatic external defibrillator (AED) for saving lives. In this study, a VF/VT classification scheme has been proposed using a deep neural network (DNN) approach using hybrid time–frequency-based features. Two annotated public domain ECG databases (CUDB and VFDB) were used as training, test, and validation of datasets. The main motivation of this study was to implement a deep learning model for the classification of the VF/VT conditions and compared the results with other standard machine learning algorithms. The signal is decomposed with the wavelet transform, empirical mode decomposition (EMD) and variable mode decomposition (VMD) approaches and twenty-four are extracted to form a hybrid model from a window of length 5 s length. The DNN classifier achieved an accuracy (Acc) of 99.2%, sensitivity (Se) of 98.8%, and specificity (Sp) of 99.3% which is comparatively better than the results of the standard classifier. The proposed algorithm can detect VTA conditions accurately, hence could reduce the rate of misinterpretations by human experts and improves the efficiency of cardiac diagnosis by ECG signal analysis.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Artificial neural networks</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Decomposition</subject><subject>Defibrillators</subject><subject>Empirical analysis</subject><subject>Fibrillation</subject><subject>Heart diseases</subject><subject>Machine learning</subject><subject>Medical and Radiation Physics</subject><subject>Neural networks</subject><subject>Public domain</subject><subject>Scientific Paper</subject><subject>Signal analysis</subject><subject>Tachycardia</subject><subject>Ventricular fibrillation</subject><subject>Wavelet transforms</subject><issn>2662-4729</issn><issn>0158-9938</issn><issn>2662-4737</issn><issn>1879-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1uFDEQha0IRKIhF2ARWcqGTYNd_hsvoxAIUqRsYG253dWZDt3uwXYTzY475IacJA4TgsSCVZVUX70qvUfIG87eccbM-8wFSN0wYA1jVssGDsgRaA2NNMK8eO7BHpLjnG8ZY6A4N1q9IodCSG64skdk8wELhjLMkc49_YGxpCEso0_Up7TZlc00eLrkId7Qza5NQ0fLMOGvn_d9wu8LxrBrWp-xoz36siTM1MeOdohbGnFJfqyl3M3p22vysvdjxuOnuiJfP158Ob9srq4_fT4_u2qCMKo0ynvPDaiw5lr1wWoQKgTbAXTSijVD7nvlA6BugxbSth0G2Qfh12DBilasyNu97jbN9cFc3DTkgOPoI85LdiCrBVqy6tKKnP6D3s5LivW7StXLBphhlYI9FdKcc8LebdMw-bRznLnHKNw-ClejcL-jcFCXTp6kl3bC7nnlj_EVEHsg11G8wfT39n9kHwBhQ5YC</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Sabut, Sukanta</creator><creator>Pandey, Om</creator><creator>Mishra, B. S. P.</creator><creator>Mohanty, Monalisa</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0488-8989</orcidid></search><sort><creationdate>20210301</creationdate><title>Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network</title><author>Sabut, Sukanta ; Pandey, Om ; Mishra, B. S. P. ; Mohanty, Monalisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-5aaa1725c8165fc96235cc9d22d49380e1af5ac2e6bc6349bdec4fc3a829293b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Artificial neural networks</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Decomposition</topic><topic>Defibrillators</topic><topic>Empirical analysis</topic><topic>Fibrillation</topic><topic>Heart diseases</topic><topic>Machine learning</topic><topic>Medical and Radiation Physics</topic><topic>Neural networks</topic><topic>Public domain</topic><topic>Scientific Paper</topic><topic>Signal analysis</topic><topic>Tachycardia</topic><topic>Ventricular fibrillation</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabut, Sukanta</creatorcontrib><creatorcontrib>Pandey, Om</creatorcontrib><creatorcontrib>Mishra, B. S. P.</creatorcontrib><creatorcontrib>Mohanty, Monalisa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Australasian physical & engineering sciences in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabut, Sukanta</au><au>Pandey, Om</au><au>Mishra, B. S. P.</au><au>Mohanty, Monalisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network</atitle><jtitle>Australasian physical & engineering sciences in medicine</jtitle><stitle>Phys Eng Sci Med</stitle><addtitle>Phys Eng Sci Med</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>44</volume><issue>1</issue><spage>135</spage><epage>145</epage><pages>135-145</pages><issn>2662-4729</issn><issn>0158-9938</issn><eissn>2662-4737</eissn><eissn>1879-5447</eissn><abstract>Sudden cardiac death (SCD) is a major cause of death among patients with heart diseases. It occurs mainly due to ventricular tachyarrhythmia (VTA) which includes ventricular tachycardia (VT) and ventricular fibrillation (VF) conditions. The main challenging task is to predict the VTA condition at a faster rate and timely application of automatic external defibrillator (AED) for saving lives. In this study, a VF/VT classification scheme has been proposed using a deep neural network (DNN) approach using hybrid time–frequency-based features. Two annotated public domain ECG databases (CUDB and VFDB) were used as training, test, and validation of datasets. The main motivation of this study was to implement a deep learning model for the classification of the VF/VT conditions and compared the results with other standard machine learning algorithms. The signal is decomposed with the wavelet transform, empirical mode decomposition (EMD) and variable mode decomposition (VMD) approaches and twenty-four are extracted to form a hybrid model from a window of length 5 s length. The DNN classifier achieved an accuracy (Acc) of 99.2%, sensitivity (Se) of 98.8%, and specificity (Sp) of 99.3% which is comparatively better than the results of the standard classifier. The proposed algorithm can detect VTA conditions accurately, hence could reduce the rate of misinterpretations by human experts and improves the efficiency of cardiac diagnosis by ECG signal analysis.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33417159</pmid><doi>10.1007/s13246-020-00964-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0488-8989</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-4729 |
ispartof | Australasian physical & engineering sciences in medicine, 2021-03, Vol.44 (1), p.135-145 |
issn | 2662-4729 0158-9938 2662-4737 1879-5447 |
language | eng |
recordid | cdi_proquest_miscellaneous_2476564047 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Arrhythmia Artificial neural networks Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Classification Classifiers Decomposition Defibrillators Empirical analysis Fibrillation Heart diseases Machine learning Medical and Radiation Physics Neural networks Public domain Scientific Paper Signal analysis Tachycardia Ventricular fibrillation Wavelet transforms |
title | Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20ventricular%20arrhythmia%20using%20hybrid%20time%E2%80%93frequency-based%20features%20and%20deep%20neural%20network&rft.jtitle=Australasian%20physical%20&%20engineering%20sciences%20in%20medicine&rft.au=Sabut,%20Sukanta&rft.date=2021-03-01&rft.volume=44&rft.issue=1&rft.spage=135&rft.epage=145&rft.pages=135-145&rft.issn=2662-4729&rft.eissn=2662-4737&rft_id=info:doi/10.1007/s13246-020-00964-2&rft_dat=%3Cproquest_cross%3E2476564047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496272070&rft_id=info:pmid/33417159&rfr_iscdi=true |