Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network

Sudden cardiac death (SCD) is a major cause of death among patients with heart diseases. It occurs mainly due to ventricular tachyarrhythmia (VTA) which includes ventricular tachycardia (VT) and ventricular fibrillation (VF) conditions. The main challenging task is to predict the VTA condition at a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Australasian physical & engineering sciences in medicine 2021-03, Vol.44 (1), p.135-145
Hauptverfasser: Sabut, Sukanta, Pandey, Om, Mishra, B. S. P., Mohanty, Monalisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue 1
container_start_page 135
container_title Australasian physical & engineering sciences in medicine
container_volume 44
creator Sabut, Sukanta
Pandey, Om
Mishra, B. S. P.
Mohanty, Monalisa
description Sudden cardiac death (SCD) is a major cause of death among patients with heart diseases. It occurs mainly due to ventricular tachyarrhythmia (VTA) which includes ventricular tachycardia (VT) and ventricular fibrillation (VF) conditions. The main challenging task is to predict the VTA condition at a faster rate and timely application of automatic external defibrillator (AED) for saving lives. In this study, a VF/VT classification scheme has been proposed using a deep neural network (DNN) approach using hybrid time–frequency-based features. Two annotated public domain ECG databases (CUDB and VFDB) were used as training, test, and validation of datasets. The main motivation of this study was to implement a deep learning model for the classification of the VF/VT conditions and compared the results with other standard machine learning algorithms. The signal is decomposed with the wavelet transform, empirical mode decomposition (EMD) and variable mode decomposition (VMD) approaches and twenty-four are extracted to form a hybrid model from a window of length 5 s length. The DNN classifier achieved an accuracy (Acc) of 99.2%, sensitivity (Se) of 98.8%, and specificity (Sp) of 99.3% which is comparatively better than the results of the standard classifier. The proposed algorithm can detect VTA conditions accurately, hence could reduce the rate of misinterpretations by human experts and improves the efficiency of cardiac diagnosis by ECG signal analysis.
doi_str_mv 10.1007/s13246-020-00964-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2476564047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476564047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-5aaa1725c8165fc96235cc9d22d49380e1af5ac2e6bc6349bdec4fc3a829293b3</originalsourceid><addsrcrecordid>eNp9kU1uFDEQha0IRKIhF2ARWcqGTYNd_hsvoxAIUqRsYG253dWZDt3uwXYTzY475IacJA4TgsSCVZVUX70qvUfIG87eccbM-8wFSN0wYA1jVssGDsgRaA2NNMK8eO7BHpLjnG8ZY6A4N1q9IodCSG64skdk8wELhjLMkc49_YGxpCEso0_Up7TZlc00eLrkId7Qza5NQ0fLMOGvn_d9wu8LxrBrWp-xoz36siTM1MeOdohbGnFJfqyl3M3p22vysvdjxuOnuiJfP158Ob9srq4_fT4_u2qCMKo0ynvPDaiw5lr1wWoQKgTbAXTSijVD7nvlA6BugxbSth0G2Qfh12DBilasyNu97jbN9cFc3DTkgOPoI85LdiCrBVqy6tKKnP6D3s5LivW7StXLBphhlYI9FdKcc8LebdMw-bRznLnHKNw-ClejcL-jcFCXTp6kl3bC7nnlj_EVEHsg11G8wfT39n9kHwBhQ5YC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496272070</pqid></control><display><type>article</type><title>Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sabut, Sukanta ; Pandey, Om ; Mishra, B. S. P. ; Mohanty, Monalisa</creator><creatorcontrib>Sabut, Sukanta ; Pandey, Om ; Mishra, B. S. P. ; Mohanty, Monalisa</creatorcontrib><description>Sudden cardiac death (SCD) is a major cause of death among patients with heart diseases. It occurs mainly due to ventricular tachyarrhythmia (VTA) which includes ventricular tachycardia (VT) and ventricular fibrillation (VF) conditions. The main challenging task is to predict the VTA condition at a faster rate and timely application of automatic external defibrillator (AED) for saving lives. In this study, a VF/VT classification scheme has been proposed using a deep neural network (DNN) approach using hybrid time–frequency-based features. Two annotated public domain ECG databases (CUDB and VFDB) were used as training, test, and validation of datasets. The main motivation of this study was to implement a deep learning model for the classification of the VF/VT conditions and compared the results with other standard machine learning algorithms. The signal is decomposed with the wavelet transform, empirical mode decomposition (EMD) and variable mode decomposition (VMD) approaches and twenty-four are extracted to form a hybrid model from a window of length 5 s length. The DNN classifier achieved an accuracy (Acc) of 99.2%, sensitivity (Se) of 98.8%, and specificity (Sp) of 99.3% which is comparatively better than the results of the standard classifier. The proposed algorithm can detect VTA conditions accurately, hence could reduce the rate of misinterpretations by human experts and improves the efficiency of cardiac diagnosis by ECG signal analysis.</description><identifier>ISSN: 2662-4729</identifier><identifier>ISSN: 0158-9938</identifier><identifier>EISSN: 2662-4737</identifier><identifier>EISSN: 1879-5447</identifier><identifier>DOI: 10.1007/s13246-020-00964-2</identifier><identifier>PMID: 33417159</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Arrhythmia ; Artificial neural networks ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Classification ; Classifiers ; Decomposition ; Defibrillators ; Empirical analysis ; Fibrillation ; Heart diseases ; Machine learning ; Medical and Radiation Physics ; Neural networks ; Public domain ; Scientific Paper ; Signal analysis ; Tachycardia ; Ventricular fibrillation ; Wavelet transforms</subject><ispartof>Australasian physical &amp; engineering sciences in medicine, 2021-03, Vol.44 (1), p.135-145</ispartof><rights>Australasian College of Physical Scientists and Engineers in Medicine 2021</rights><rights>Australasian College of Physical Scientists and Engineers in Medicine 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-5aaa1725c8165fc96235cc9d22d49380e1af5ac2e6bc6349bdec4fc3a829293b3</citedby><cites>FETCH-LOGICAL-c375t-5aaa1725c8165fc96235cc9d22d49380e1af5ac2e6bc6349bdec4fc3a829293b3</cites><orcidid>0000-0002-0488-8989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13246-020-00964-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13246-020-00964-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33417159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabut, Sukanta</creatorcontrib><creatorcontrib>Pandey, Om</creatorcontrib><creatorcontrib>Mishra, B. S. P.</creatorcontrib><creatorcontrib>Mohanty, Monalisa</creatorcontrib><title>Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network</title><title>Australasian physical &amp; engineering sciences in medicine</title><addtitle>Phys Eng Sci Med</addtitle><addtitle>Phys Eng Sci Med</addtitle><description>Sudden cardiac death (SCD) is a major cause of death among patients with heart diseases. It occurs mainly due to ventricular tachyarrhythmia (VTA) which includes ventricular tachycardia (VT) and ventricular fibrillation (VF) conditions. The main challenging task is to predict the VTA condition at a faster rate and timely application of automatic external defibrillator (AED) for saving lives. In this study, a VF/VT classification scheme has been proposed using a deep neural network (DNN) approach using hybrid time–frequency-based features. Two annotated public domain ECG databases (CUDB and VFDB) were used as training, test, and validation of datasets. The main motivation of this study was to implement a deep learning model for the classification of the VF/VT conditions and compared the results with other standard machine learning algorithms. The signal is decomposed with the wavelet transform, empirical mode decomposition (EMD) and variable mode decomposition (VMD) approaches and twenty-four are extracted to form a hybrid model from a window of length 5 s length. The DNN classifier achieved an accuracy (Acc) of 99.2%, sensitivity (Se) of 98.8%, and specificity (Sp) of 99.3% which is comparatively better than the results of the standard classifier. The proposed algorithm can detect VTA conditions accurately, hence could reduce the rate of misinterpretations by human experts and improves the efficiency of cardiac diagnosis by ECG signal analysis.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Artificial neural networks</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Decomposition</subject><subject>Defibrillators</subject><subject>Empirical analysis</subject><subject>Fibrillation</subject><subject>Heart diseases</subject><subject>Machine learning</subject><subject>Medical and Radiation Physics</subject><subject>Neural networks</subject><subject>Public domain</subject><subject>Scientific Paper</subject><subject>Signal analysis</subject><subject>Tachycardia</subject><subject>Ventricular fibrillation</subject><subject>Wavelet transforms</subject><issn>2662-4729</issn><issn>0158-9938</issn><issn>2662-4737</issn><issn>1879-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1uFDEQha0IRKIhF2ARWcqGTYNd_hsvoxAIUqRsYG253dWZDt3uwXYTzY475IacJA4TgsSCVZVUX70qvUfIG87eccbM-8wFSN0wYA1jVssGDsgRaA2NNMK8eO7BHpLjnG8ZY6A4N1q9IodCSG64skdk8wELhjLMkc49_YGxpCEso0_Up7TZlc00eLrkId7Qza5NQ0fLMOGvn_d9wu8LxrBrWp-xoz36siTM1MeOdohbGnFJfqyl3M3p22vysvdjxuOnuiJfP158Ob9srq4_fT4_u2qCMKo0ynvPDaiw5lr1wWoQKgTbAXTSijVD7nvlA6BugxbSth0G2Qfh12DBilasyNu97jbN9cFc3DTkgOPoI85LdiCrBVqy6tKKnP6D3s5LivW7StXLBphhlYI9FdKcc8LebdMw-bRznLnHKNw-ClejcL-jcFCXTp6kl3bC7nnlj_EVEHsg11G8wfT39n9kHwBhQ5YC</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Sabut, Sukanta</creator><creator>Pandey, Om</creator><creator>Mishra, B. S. P.</creator><creator>Mohanty, Monalisa</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0488-8989</orcidid></search><sort><creationdate>20210301</creationdate><title>Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network</title><author>Sabut, Sukanta ; Pandey, Om ; Mishra, B. S. P. ; Mohanty, Monalisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-5aaa1725c8165fc96235cc9d22d49380e1af5ac2e6bc6349bdec4fc3a829293b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Artificial neural networks</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Decomposition</topic><topic>Defibrillators</topic><topic>Empirical analysis</topic><topic>Fibrillation</topic><topic>Heart diseases</topic><topic>Machine learning</topic><topic>Medical and Radiation Physics</topic><topic>Neural networks</topic><topic>Public domain</topic><topic>Scientific Paper</topic><topic>Signal analysis</topic><topic>Tachycardia</topic><topic>Ventricular fibrillation</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabut, Sukanta</creatorcontrib><creatorcontrib>Pandey, Om</creatorcontrib><creatorcontrib>Mishra, B. S. P.</creatorcontrib><creatorcontrib>Mohanty, Monalisa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Australasian physical &amp; engineering sciences in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabut, Sukanta</au><au>Pandey, Om</au><au>Mishra, B. S. P.</au><au>Mohanty, Monalisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network</atitle><jtitle>Australasian physical &amp; engineering sciences in medicine</jtitle><stitle>Phys Eng Sci Med</stitle><addtitle>Phys Eng Sci Med</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>44</volume><issue>1</issue><spage>135</spage><epage>145</epage><pages>135-145</pages><issn>2662-4729</issn><issn>0158-9938</issn><eissn>2662-4737</eissn><eissn>1879-5447</eissn><abstract>Sudden cardiac death (SCD) is a major cause of death among patients with heart diseases. It occurs mainly due to ventricular tachyarrhythmia (VTA) which includes ventricular tachycardia (VT) and ventricular fibrillation (VF) conditions. The main challenging task is to predict the VTA condition at a faster rate and timely application of automatic external defibrillator (AED) for saving lives. In this study, a VF/VT classification scheme has been proposed using a deep neural network (DNN) approach using hybrid time–frequency-based features. Two annotated public domain ECG databases (CUDB and VFDB) were used as training, test, and validation of datasets. The main motivation of this study was to implement a deep learning model for the classification of the VF/VT conditions and compared the results with other standard machine learning algorithms. The signal is decomposed with the wavelet transform, empirical mode decomposition (EMD) and variable mode decomposition (VMD) approaches and twenty-four are extracted to form a hybrid model from a window of length 5 s length. The DNN classifier achieved an accuracy (Acc) of 99.2%, sensitivity (Se) of 98.8%, and specificity (Sp) of 99.3% which is comparatively better than the results of the standard classifier. The proposed algorithm can detect VTA conditions accurately, hence could reduce the rate of misinterpretations by human experts and improves the efficiency of cardiac diagnosis by ECG signal analysis.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33417159</pmid><doi>10.1007/s13246-020-00964-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0488-8989</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2662-4729
ispartof Australasian physical & engineering sciences in medicine, 2021-03, Vol.44 (1), p.135-145
issn 2662-4729
0158-9938
2662-4737
1879-5447
language eng
recordid cdi_proquest_miscellaneous_2476564047
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Arrhythmia
Artificial neural networks
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Classification
Classifiers
Decomposition
Defibrillators
Empirical analysis
Fibrillation
Heart diseases
Machine learning
Medical and Radiation Physics
Neural networks
Public domain
Scientific Paper
Signal analysis
Tachycardia
Ventricular fibrillation
Wavelet transforms
title Detection of ventricular arrhythmia using hybrid time–frequency-based features and deep neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20ventricular%20arrhythmia%20using%20hybrid%20time%E2%80%93frequency-based%20features%20and%20deep%20neural%20network&rft.jtitle=Australasian%20physical%20&%20engineering%20sciences%20in%20medicine&rft.au=Sabut,%20Sukanta&rft.date=2021-03-01&rft.volume=44&rft.issue=1&rft.spage=135&rft.epage=145&rft.pages=135-145&rft.issn=2662-4729&rft.eissn=2662-4737&rft_id=info:doi/10.1007/s13246-020-00964-2&rft_dat=%3Cproquest_cross%3E2476564047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496272070&rft_id=info:pmid/33417159&rfr_iscdi=true