Characterizing the Cytocompatibility of Various Cross-Linking Chemistries for the Production of Biostable Large-Pore Protein Crystal Materials

With rapidly growing interest in therapeutic macromolecules, targeted drug delivery, and in vivo biosensing comes the need for new nanostructured biomaterials capable of macromolecule storage and metered release that exhibit robust stability and cytocompatibility. One novel possibility for such a ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS biomaterials science & engineering 2018-03, Vol.4 (3), p.826-831
Hauptverfasser: Hartje, Luke F, Bui, Hieu T, Andales, David A, James, Susan P, Huber, Thaddaus R, Snow, Christopher D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 831
container_issue 3
container_start_page 826
container_title ACS biomaterials science & engineering
container_volume 4
creator Hartje, Luke F
Bui, Hieu T
Andales, David A
James, Susan P
Huber, Thaddaus R
Snow, Christopher D
description With rapidly growing interest in therapeutic macromolecules, targeted drug delivery, and in vivo biosensing comes the need for new nanostructured biomaterials capable of macromolecule storage and metered release that exhibit robust stability and cytocompatibility. One novel possibility for such a material are engineered large-pore protein crystals (LPCs). Here, various chemically stabilized LPC derived biomaterials were generated using three cross-linking agents: glutaraldehyde, oxaldehyde, and 1-ethyl-3-(3-(dimethylamino)­propyl)­carbodiimide. LPC biostability and in vitro mammalian cytocompatibility was subsequently evaluated and compared to similarly cross-linked tetragonal hen egg white lysozyme crystals. This study demonstrates the ability of various cross-linking chemistries to physically stabilize the molecular structure of LPC materialsincreasing their tolerance to challenging conditions while exhibiting minimal cytotoxicity. This approach produces LPC-derived biomaterials with promising utility for diverse applications in biotechnology and nanomedicine.
doi_str_mv 10.1021/acsbiomaterials.8b00023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2476562948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476562948</sourcerecordid><originalsourceid>FETCH-LOGICAL-a423t-6fe9ae4991bdfe89f1ab60efb2899e33637ffff5da451428a116539371e3d2253</originalsourceid><addsrcrecordid>eNqFkb1OwzAUhS0EgqrwCpCRJSX-SWKPEPEnFcEArJGTXFNDEhfbGcpD8Mw4tEWIBS_Xkr9zro4PQic4meGE4DNZu0qbTnqwWrZuxqskSQjdQRNCcxoLnvPdX_cDdOTca0Aw5SljbB8dUMowz7N8gj6LhbSyHq0-dP8S-QVExcqb2nRL6XWlW-1XkVHRs7TaDC4qrHEunuv-bcSLBXTaeavBRcrYb_mDNc1Qe236UXehjfOyaiGaS_sC8YOx34gH3QezVXhso7ttlkO0p8KAo82coqery8fiJp7fX98W5_NYMkJ9nCkQEpgQuGoUcKGwrLIEVEW4EEBpRnMVTtpIlmJGuMQ4S6mgOQbaEJLSKTpd-y6teR_A-TLEqKFtZQ8hZUlYnqUZEYwHNF-j9ZjcgiqXVnfSrkqclGMf5Z8-yk0fQXm8WTJUHTQ_uu3vB4CugeBQvprB9qP8P9svKEygdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476562948</pqid></control><display><type>article</type><title>Characterizing the Cytocompatibility of Various Cross-Linking Chemistries for the Production of Biostable Large-Pore Protein Crystal Materials</title><source>ACS Publications</source><creator>Hartje, Luke F ; Bui, Hieu T ; Andales, David A ; James, Susan P ; Huber, Thaddaus R ; Snow, Christopher D</creator><creatorcontrib>Hartje, Luke F ; Bui, Hieu T ; Andales, David A ; James, Susan P ; Huber, Thaddaus R ; Snow, Christopher D</creatorcontrib><description>With rapidly growing interest in therapeutic macromolecules, targeted drug delivery, and in vivo biosensing comes the need for new nanostructured biomaterials capable of macromolecule storage and metered release that exhibit robust stability and cytocompatibility. One novel possibility for such a material are engineered large-pore protein crystals (LPCs). Here, various chemically stabilized LPC derived biomaterials were generated using three cross-linking agents: glutaraldehyde, oxaldehyde, and 1-ethyl-3-(3-(dimethylamino)­propyl)­carbodiimide. LPC biostability and in vitro mammalian cytocompatibility was subsequently evaluated and compared to similarly cross-linked tetragonal hen egg white lysozyme crystals. This study demonstrates the ability of various cross-linking chemistries to physically stabilize the molecular structure of LPC materialsincreasing their tolerance to challenging conditions while exhibiting minimal cytotoxicity. This approach produces LPC-derived biomaterials with promising utility for diverse applications in biotechnology and nanomedicine.</description><identifier>ISSN: 2373-9878</identifier><identifier>EISSN: 2373-9878</identifier><identifier>DOI: 10.1021/acsbiomaterials.8b00023</identifier><identifier>PMID: 33418767</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS biomaterials science &amp; engineering, 2018-03, Vol.4 (3), p.826-831</ispartof><rights>Copyright © 2018 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a423t-6fe9ae4991bdfe89f1ab60efb2899e33637ffff5da451428a116539371e3d2253</citedby><cites>FETCH-LOGICAL-a423t-6fe9ae4991bdfe89f1ab60efb2899e33637ffff5da451428a116539371e3d2253</cites><orcidid>0000-0003-4474-0871 ; 0000-0002-7690-3519 ; 0000-0002-0672-4101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsbiomaterials.8b00023$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsbiomaterials.8b00023$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33418767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hartje, Luke F</creatorcontrib><creatorcontrib>Bui, Hieu T</creatorcontrib><creatorcontrib>Andales, David A</creatorcontrib><creatorcontrib>James, Susan P</creatorcontrib><creatorcontrib>Huber, Thaddaus R</creatorcontrib><creatorcontrib>Snow, Christopher D</creatorcontrib><title>Characterizing the Cytocompatibility of Various Cross-Linking Chemistries for the Production of Biostable Large-Pore Protein Crystal Materials</title><title>ACS biomaterials science &amp; engineering</title><addtitle>ACS Biomater. Sci. Eng</addtitle><description>With rapidly growing interest in therapeutic macromolecules, targeted drug delivery, and in vivo biosensing comes the need for new nanostructured biomaterials capable of macromolecule storage and metered release that exhibit robust stability and cytocompatibility. One novel possibility for such a material are engineered large-pore protein crystals (LPCs). Here, various chemically stabilized LPC derived biomaterials were generated using three cross-linking agents: glutaraldehyde, oxaldehyde, and 1-ethyl-3-(3-(dimethylamino)­propyl)­carbodiimide. LPC biostability and in vitro mammalian cytocompatibility was subsequently evaluated and compared to similarly cross-linked tetragonal hen egg white lysozyme crystals. This study demonstrates the ability of various cross-linking chemistries to physically stabilize the molecular structure of LPC materialsincreasing their tolerance to challenging conditions while exhibiting minimal cytotoxicity. This approach produces LPC-derived biomaterials with promising utility for diverse applications in biotechnology and nanomedicine.</description><issn>2373-9878</issn><issn>2373-9878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkb1OwzAUhS0EgqrwCpCRJSX-SWKPEPEnFcEArJGTXFNDEhfbGcpD8Mw4tEWIBS_Xkr9zro4PQic4meGE4DNZu0qbTnqwWrZuxqskSQjdQRNCcxoLnvPdX_cDdOTca0Aw5SljbB8dUMowz7N8gj6LhbSyHq0-dP8S-QVExcqb2nRL6XWlW-1XkVHRs7TaDC4qrHEunuv-bcSLBXTaeavBRcrYb_mDNc1Qe236UXehjfOyaiGaS_sC8YOx34gH3QezVXhso7ttlkO0p8KAo82coqery8fiJp7fX98W5_NYMkJ9nCkQEpgQuGoUcKGwrLIEVEW4EEBpRnMVTtpIlmJGuMQ4S6mgOQbaEJLSKTpd-y6teR_A-TLEqKFtZQ8hZUlYnqUZEYwHNF-j9ZjcgiqXVnfSrkqclGMf5Z8-yk0fQXm8WTJUHTQ_uu3vB4CugeBQvprB9qP8P9svKEygdQ</recordid><startdate>20180312</startdate><enddate>20180312</enddate><creator>Hartje, Luke F</creator><creator>Bui, Hieu T</creator><creator>Andales, David A</creator><creator>James, Susan P</creator><creator>Huber, Thaddaus R</creator><creator>Snow, Christopher D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4474-0871</orcidid><orcidid>https://orcid.org/0000-0002-7690-3519</orcidid><orcidid>https://orcid.org/0000-0002-0672-4101</orcidid></search><sort><creationdate>20180312</creationdate><title>Characterizing the Cytocompatibility of Various Cross-Linking Chemistries for the Production of Biostable Large-Pore Protein Crystal Materials</title><author>Hartje, Luke F ; Bui, Hieu T ; Andales, David A ; James, Susan P ; Huber, Thaddaus R ; Snow, Christopher D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a423t-6fe9ae4991bdfe89f1ab60efb2899e33637ffff5da451428a116539371e3d2253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hartje, Luke F</creatorcontrib><creatorcontrib>Bui, Hieu T</creatorcontrib><creatorcontrib>Andales, David A</creatorcontrib><creatorcontrib>James, Susan P</creatorcontrib><creatorcontrib>Huber, Thaddaus R</creatorcontrib><creatorcontrib>Snow, Christopher D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS biomaterials science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartje, Luke F</au><au>Bui, Hieu T</au><au>Andales, David A</au><au>James, Susan P</au><au>Huber, Thaddaus R</au><au>Snow, Christopher D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing the Cytocompatibility of Various Cross-Linking Chemistries for the Production of Biostable Large-Pore Protein Crystal Materials</atitle><jtitle>ACS biomaterials science &amp; engineering</jtitle><addtitle>ACS Biomater. Sci. Eng</addtitle><date>2018-03-12</date><risdate>2018</risdate><volume>4</volume><issue>3</issue><spage>826</spage><epage>831</epage><pages>826-831</pages><issn>2373-9878</issn><eissn>2373-9878</eissn><abstract>With rapidly growing interest in therapeutic macromolecules, targeted drug delivery, and in vivo biosensing comes the need for new nanostructured biomaterials capable of macromolecule storage and metered release that exhibit robust stability and cytocompatibility. One novel possibility for such a material are engineered large-pore protein crystals (LPCs). Here, various chemically stabilized LPC derived biomaterials were generated using three cross-linking agents: glutaraldehyde, oxaldehyde, and 1-ethyl-3-(3-(dimethylamino)­propyl)­carbodiimide. LPC biostability and in vitro mammalian cytocompatibility was subsequently evaluated and compared to similarly cross-linked tetragonal hen egg white lysozyme crystals. This study demonstrates the ability of various cross-linking chemistries to physically stabilize the molecular structure of LPC materialsincreasing their tolerance to challenging conditions while exhibiting minimal cytotoxicity. This approach produces LPC-derived biomaterials with promising utility for diverse applications in biotechnology and nanomedicine.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33418767</pmid><doi>10.1021/acsbiomaterials.8b00023</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4474-0871</orcidid><orcidid>https://orcid.org/0000-0002-7690-3519</orcidid><orcidid>https://orcid.org/0000-0002-0672-4101</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2373-9878
ispartof ACS biomaterials science & engineering, 2018-03, Vol.4 (3), p.826-831
issn 2373-9878
2373-9878
language eng
recordid cdi_proquest_miscellaneous_2476562948
source ACS Publications
title Characterizing the Cytocompatibility of Various Cross-Linking Chemistries for the Production of Biostable Large-Pore Protein Crystal Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20the%20Cytocompatibility%20of%20Various%20Cross-Linking%20Chemistries%20for%20the%20Production%20of%20Biostable%20Large-Pore%20Protein%20Crystal%20Materials&rft.jtitle=ACS%20biomaterials%20science%20&%20engineering&rft.au=Hartje,%20Luke%20F&rft.date=2018-03-12&rft.volume=4&rft.issue=3&rft.spage=826&rft.epage=831&rft.pages=826-831&rft.issn=2373-9878&rft.eissn=2373-9878&rft_id=info:doi/10.1021/acsbiomaterials.8b00023&rft_dat=%3Cproquest_cross%3E2476562948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476562948&rft_id=info:pmid/33418767&rfr_iscdi=true