Two novel online nomograms for predicting the survival of individual patients undergoing partial hepatectomy for huge hepatocellular carcinoma

A method for predicting prognosis of patients who undergo partial hepatectomy for huge hepatocellular carcinoma (HHCC, diameter ≥10 cm) is currently lacking. This study aimed to establish two online nomograms to predict the overall survival (OS) and disease-free survival (DFS) for patients undergoin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:HPB (Oxford, England) England), 2021-08, Vol.23 (8), p.1217-1229
Hauptverfasser: Chen, Zixiang, Cai, Ming, Wang, Xu, Zhou, Yi, Chen, Jiangming, Xie, Qingsong, Zhao, Yijun, Xie, Kun, Fang, Qiang, Pu, Tian, Jiang, Dong, Bai, Tao, Ma, Jinliang, Geng, Xiaoping, Liu, Fubao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1229
container_issue 8
container_start_page 1217
container_title HPB (Oxford, England)
container_volume 23
creator Chen, Zixiang
Cai, Ming
Wang, Xu
Zhou, Yi
Chen, Jiangming
Xie, Qingsong
Zhao, Yijun
Xie, Kun
Fang, Qiang
Pu, Tian
Jiang, Dong
Bai, Tao
Ma, Jinliang
Geng, Xiaoping
Liu, Fubao
description A method for predicting prognosis of patients who undergo partial hepatectomy for huge hepatocellular carcinoma (HHCC, diameter ≥10 cm) is currently lacking. This study aimed to establish two online nomograms to predict the overall survival (OS) and disease-free survival (DFS) for patients undergoing resection for HHCC. The clinicopathologic characteristics and follow-up information of patients who underwent partial hepatectomy for HHCC at two medical centers were reviewed. Using a training cohort, a Cox model was used to identify the predictors of survival. Two dynamic nomograms for OS and DFS were developed and validated based on the data. Eight and nine independent factors derived from the multivariate analysis of the training cohort were screened and incorporated into the nomograms for OS and DFS, respectively. In the training cohort, the nomogram achieved concordance indices (C-indices) of 0.745 and 0.738 in predicting the OS and DFS, respectively. These results were supported by external validation (C-indices: 0.822 for OS and 0.827 for DFS). Further, the calibration curves of the endpoints showed a favorable agreement between the nomograms’ assessments and actual observations. The two web-based nomograms demonstrated optimal predictive performance for patients undergoing partial hepatectomy for HHCC. This provides a practical method for a personalized prognosis based on an individual's underlying risk factors.
doi_str_mv 10.1016/j.hpb.2020.12.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2476560028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1365182X20323984</els_id><sourcerecordid>2476560028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-ae2edcf6ea7380992e2d336a0be783036deee68c801b72496aeebe62d480c8e63</originalsourceid><addsrcrecordid>eNp9kc1O3DAUhS1UVKbQB2BTedlNgn8yTqKuKsRPpZHYgMTOcuybGY-SOLWTIF6iz8wdhnbZlX19v3Nsn0vIJWc5Z1xd7fPd2OSCCaxFzpg4IStelGUm1mXxCfdSrTNeiecz8iWlPQIoqz-TMykLLutarMifx5dAh7BAR8PQ-QGw6MM2mj7RNkQ6RnDeTn7Y0mkHNM1x8YtBuKV-cH7xbsZqNJOHYUp0HhzEbTjgo4mTx94OsAt2Cv3ru-Nu3sLxMFjourkzkVoTrceLzQU5bU2X4OvHek6ebm8er--zzcPdr-ufm8zKWk2ZAQHOtgpMKSuGHwHhpFSGNVBWkknlAEBVtmK8KUVRKwPQgBKuqJitQMlz8v3oO8bwe4Y06d6nw3PMAGFOWhSlWisMrEKUH1EbQ0oRWj1G35v4qjnThzHovcYx6MMYNBcaRaj59mE_Nz24f4q_uSPw4wgAfnLxEHWymKDFsCNmpV3w_7F_A_uEnN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476560028</pqid></control><display><type>article</type><title>Two novel online nomograms for predicting the survival of individual patients undergoing partial hepatectomy for huge hepatocellular carcinoma</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chen, Zixiang ; Cai, Ming ; Wang, Xu ; Zhou, Yi ; Chen, Jiangming ; Xie, Qingsong ; Zhao, Yijun ; Xie, Kun ; Fang, Qiang ; Pu, Tian ; Jiang, Dong ; Bai, Tao ; Ma, Jinliang ; Geng, Xiaoping ; Liu, Fubao</creator><creatorcontrib>Chen, Zixiang ; Cai, Ming ; Wang, Xu ; Zhou, Yi ; Chen, Jiangming ; Xie, Qingsong ; Zhao, Yijun ; Xie, Kun ; Fang, Qiang ; Pu, Tian ; Jiang, Dong ; Bai, Tao ; Ma, Jinliang ; Geng, Xiaoping ; Liu, Fubao</creatorcontrib><description>A method for predicting prognosis of patients who undergo partial hepatectomy for huge hepatocellular carcinoma (HHCC, diameter ≥10 cm) is currently lacking. This study aimed to establish two online nomograms to predict the overall survival (OS) and disease-free survival (DFS) for patients undergoing resection for HHCC. The clinicopathologic characteristics and follow-up information of patients who underwent partial hepatectomy for HHCC at two medical centers were reviewed. Using a training cohort, a Cox model was used to identify the predictors of survival. Two dynamic nomograms for OS and DFS were developed and validated based on the data. Eight and nine independent factors derived from the multivariate analysis of the training cohort were screened and incorporated into the nomograms for OS and DFS, respectively. In the training cohort, the nomogram achieved concordance indices (C-indices) of 0.745 and 0.738 in predicting the OS and DFS, respectively. These results were supported by external validation (C-indices: 0.822 for OS and 0.827 for DFS). Further, the calibration curves of the endpoints showed a favorable agreement between the nomograms’ assessments and actual observations. The two web-based nomograms demonstrated optimal predictive performance for patients undergoing partial hepatectomy for HHCC. This provides a practical method for a personalized prognosis based on an individual's underlying risk factors.</description><identifier>ISSN: 1365-182X</identifier><identifier>EISSN: 1477-2574</identifier><identifier>DOI: 10.1016/j.hpb.2020.12.002</identifier><identifier>PMID: 33413992</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Carcinoma, Hepatocellular - surgery ; Hepatectomy - adverse effects ; Humans ; Liver Neoplasms - diagnostic imaging ; Liver Neoplasms - surgery ; Nomograms ; Prognosis ; Retrospective Studies</subject><ispartof>HPB (Oxford, England), 2021-08, Vol.23 (8), p.1217-1229</ispartof><rights>2020 International Hepato-Pancreato-Biliary Association Inc.</rights><rights>Copyright © 2020 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-ae2edcf6ea7380992e2d336a0be783036deee68c801b72496aeebe62d480c8e63</citedby><cites>FETCH-LOGICAL-c396t-ae2edcf6ea7380992e2d336a0be783036deee68c801b72496aeebe62d480c8e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33413992$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zixiang</creatorcontrib><creatorcontrib>Cai, Ming</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Chen, Jiangming</creatorcontrib><creatorcontrib>Xie, Qingsong</creatorcontrib><creatorcontrib>Zhao, Yijun</creatorcontrib><creatorcontrib>Xie, Kun</creatorcontrib><creatorcontrib>Fang, Qiang</creatorcontrib><creatorcontrib>Pu, Tian</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Bai, Tao</creatorcontrib><creatorcontrib>Ma, Jinliang</creatorcontrib><creatorcontrib>Geng, Xiaoping</creatorcontrib><creatorcontrib>Liu, Fubao</creatorcontrib><title>Two novel online nomograms for predicting the survival of individual patients undergoing partial hepatectomy for huge hepatocellular carcinoma</title><title>HPB (Oxford, England)</title><addtitle>HPB (Oxford)</addtitle><description>A method for predicting prognosis of patients who undergo partial hepatectomy for huge hepatocellular carcinoma (HHCC, diameter ≥10 cm) is currently lacking. This study aimed to establish two online nomograms to predict the overall survival (OS) and disease-free survival (DFS) for patients undergoing resection for HHCC. The clinicopathologic characteristics and follow-up information of patients who underwent partial hepatectomy for HHCC at two medical centers were reviewed. Using a training cohort, a Cox model was used to identify the predictors of survival. Two dynamic nomograms for OS and DFS were developed and validated based on the data. Eight and nine independent factors derived from the multivariate analysis of the training cohort were screened and incorporated into the nomograms for OS and DFS, respectively. In the training cohort, the nomogram achieved concordance indices (C-indices) of 0.745 and 0.738 in predicting the OS and DFS, respectively. These results were supported by external validation (C-indices: 0.822 for OS and 0.827 for DFS). Further, the calibration curves of the endpoints showed a favorable agreement between the nomograms’ assessments and actual observations. The two web-based nomograms demonstrated optimal predictive performance for patients undergoing partial hepatectomy for HHCC. This provides a practical method for a personalized prognosis based on an individual's underlying risk factors.</description><subject>Carcinoma, Hepatocellular - surgery</subject><subject>Hepatectomy - adverse effects</subject><subject>Humans</subject><subject>Liver Neoplasms - diagnostic imaging</subject><subject>Liver Neoplasms - surgery</subject><subject>Nomograms</subject><subject>Prognosis</subject><subject>Retrospective Studies</subject><issn>1365-182X</issn><issn>1477-2574</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1O3DAUhS1UVKbQB2BTedlNgn8yTqKuKsRPpZHYgMTOcuybGY-SOLWTIF6iz8wdhnbZlX19v3Nsn0vIJWc5Z1xd7fPd2OSCCaxFzpg4IStelGUm1mXxCfdSrTNeiecz8iWlPQIoqz-TMykLLutarMifx5dAh7BAR8PQ-QGw6MM2mj7RNkQ6RnDeTn7Y0mkHNM1x8YtBuKV-cH7xbsZqNJOHYUp0HhzEbTjgo4mTx94OsAt2Cv3ru-Nu3sLxMFjourkzkVoTrceLzQU5bU2X4OvHek6ebm8er--zzcPdr-ufm8zKWk2ZAQHOtgpMKSuGHwHhpFSGNVBWkknlAEBVtmK8KUVRKwPQgBKuqJitQMlz8v3oO8bwe4Y06d6nw3PMAGFOWhSlWisMrEKUH1EbQ0oRWj1G35v4qjnThzHovcYx6MMYNBcaRaj59mE_Nz24f4q_uSPw4wgAfnLxEHWymKDFsCNmpV3w_7F_A_uEnN4</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Chen, Zixiang</creator><creator>Cai, Ming</creator><creator>Wang, Xu</creator><creator>Zhou, Yi</creator><creator>Chen, Jiangming</creator><creator>Xie, Qingsong</creator><creator>Zhao, Yijun</creator><creator>Xie, Kun</creator><creator>Fang, Qiang</creator><creator>Pu, Tian</creator><creator>Jiang, Dong</creator><creator>Bai, Tao</creator><creator>Ma, Jinliang</creator><creator>Geng, Xiaoping</creator><creator>Liu, Fubao</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202108</creationdate><title>Two novel online nomograms for predicting the survival of individual patients undergoing partial hepatectomy for huge hepatocellular carcinoma</title><author>Chen, Zixiang ; Cai, Ming ; Wang, Xu ; Zhou, Yi ; Chen, Jiangming ; Xie, Qingsong ; Zhao, Yijun ; Xie, Kun ; Fang, Qiang ; Pu, Tian ; Jiang, Dong ; Bai, Tao ; Ma, Jinliang ; Geng, Xiaoping ; Liu, Fubao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-ae2edcf6ea7380992e2d336a0be783036deee68c801b72496aeebe62d480c8e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carcinoma, Hepatocellular - surgery</topic><topic>Hepatectomy - adverse effects</topic><topic>Humans</topic><topic>Liver Neoplasms - diagnostic imaging</topic><topic>Liver Neoplasms - surgery</topic><topic>Nomograms</topic><topic>Prognosis</topic><topic>Retrospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zixiang</creatorcontrib><creatorcontrib>Cai, Ming</creatorcontrib><creatorcontrib>Wang, Xu</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Chen, Jiangming</creatorcontrib><creatorcontrib>Xie, Qingsong</creatorcontrib><creatorcontrib>Zhao, Yijun</creatorcontrib><creatorcontrib>Xie, Kun</creatorcontrib><creatorcontrib>Fang, Qiang</creatorcontrib><creatorcontrib>Pu, Tian</creatorcontrib><creatorcontrib>Jiang, Dong</creatorcontrib><creatorcontrib>Bai, Tao</creatorcontrib><creatorcontrib>Ma, Jinliang</creatorcontrib><creatorcontrib>Geng, Xiaoping</creatorcontrib><creatorcontrib>Liu, Fubao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>HPB (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zixiang</au><au>Cai, Ming</au><au>Wang, Xu</au><au>Zhou, Yi</au><au>Chen, Jiangming</au><au>Xie, Qingsong</au><au>Zhao, Yijun</au><au>Xie, Kun</au><au>Fang, Qiang</au><au>Pu, Tian</au><au>Jiang, Dong</au><au>Bai, Tao</au><au>Ma, Jinliang</au><au>Geng, Xiaoping</au><au>Liu, Fubao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two novel online nomograms for predicting the survival of individual patients undergoing partial hepatectomy for huge hepatocellular carcinoma</atitle><jtitle>HPB (Oxford, England)</jtitle><addtitle>HPB (Oxford)</addtitle><date>2021-08</date><risdate>2021</risdate><volume>23</volume><issue>8</issue><spage>1217</spage><epage>1229</epage><pages>1217-1229</pages><issn>1365-182X</issn><eissn>1477-2574</eissn><abstract>A method for predicting prognosis of patients who undergo partial hepatectomy for huge hepatocellular carcinoma (HHCC, diameter ≥10 cm) is currently lacking. This study aimed to establish two online nomograms to predict the overall survival (OS) and disease-free survival (DFS) for patients undergoing resection for HHCC. The clinicopathologic characteristics and follow-up information of patients who underwent partial hepatectomy for HHCC at two medical centers were reviewed. Using a training cohort, a Cox model was used to identify the predictors of survival. Two dynamic nomograms for OS and DFS were developed and validated based on the data. Eight and nine independent factors derived from the multivariate analysis of the training cohort were screened and incorporated into the nomograms for OS and DFS, respectively. In the training cohort, the nomogram achieved concordance indices (C-indices) of 0.745 and 0.738 in predicting the OS and DFS, respectively. These results were supported by external validation (C-indices: 0.822 for OS and 0.827 for DFS). Further, the calibration curves of the endpoints showed a favorable agreement between the nomograms’ assessments and actual observations. The two web-based nomograms demonstrated optimal predictive performance for patients undergoing partial hepatectomy for HHCC. This provides a practical method for a personalized prognosis based on an individual's underlying risk factors.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33413992</pmid><doi>10.1016/j.hpb.2020.12.002</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1365-182X
ispartof HPB (Oxford, England), 2021-08, Vol.23 (8), p.1217-1229
issn 1365-182X
1477-2574
language eng
recordid cdi_proquest_miscellaneous_2476560028
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Carcinoma, Hepatocellular - surgery
Hepatectomy - adverse effects
Humans
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - surgery
Nomograms
Prognosis
Retrospective Studies
title Two novel online nomograms for predicting the survival of individual patients undergoing partial hepatectomy for huge hepatocellular carcinoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20novel%20online%20nomograms%20for%20predicting%20the%20survival%20of%20individual%20patients%20undergoing%20partial%20hepatectomy%20for%20huge%20hepatocellular%20carcinoma&rft.jtitle=HPB%20(Oxford,%20England)&rft.au=Chen,%20Zixiang&rft.date=2021-08&rft.volume=23&rft.issue=8&rft.spage=1217&rft.epage=1229&rft.pages=1217-1229&rft.issn=1365-182X&rft.eissn=1477-2574&rft_id=info:doi/10.1016/j.hpb.2020.12.002&rft_dat=%3Cproquest_cross%3E2476560028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476560028&rft_id=info:pmid/33413992&rft_els_id=S1365182X20323984&rfr_iscdi=true