Mechanically Strong, Scalable, Mesoporous Xerogels of Nanocellulose Featuring Light Permeability, Thermal Insulation, and Flame Self-Extinction

Scalability is a common challenge in the structuring of nanoscale particle dispersions, particularly in the drying of these dispersions for producing functional, porous structures such as aerogels. Aerogel production relies on supercritical drying, which exhibits poor scalability. A solution to this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-01, Vol.15 (1), p.1436-1444
Hauptverfasser: Sakuma, Wataru, Yamasaki, Shunsuke, Fujisawa, Shuji, Kodama, Takashi, Shiomi, Junichiro, Kanamori, Kazuyoshi, Saito, Tsuguyuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1444
container_issue 1
container_start_page 1436
container_title ACS nano
container_volume 15
creator Sakuma, Wataru
Yamasaki, Shunsuke
Fujisawa, Shuji
Kodama, Takashi
Shiomi, Junichiro
Kanamori, Kazuyoshi
Saito, Tsuguyuki
description Scalability is a common challenge in the structuring of nanoscale particle dispersions, particularly in the drying of these dispersions for producing functional, porous structures such as aerogels. Aerogel production relies on supercritical drying, which exhibits poor scalability. A solution to this scalability limitation is the use of evaporative drying under ambient pressure. However, the evaporative drying of wet gels comprising nanoscale particles is accompanied by a strong capillary force. Therefore, it is challenging to produce evaporative-dried gels or “xerogels” that possess the specific structural profiles of aerogels such as mesoscale pores, high porosity, and high specific surface area (SSA). Herein, we demonstrate a structure of mesoporous xerogels with high porosity (∼80%) and high SSA (>400 m2 g–1) achieved by exploiting cellulose nanofibers (CNFs) as the building blocks with tunable interparticle interactions. CNFs are sustainable, wood-derived materials with high strength. In this study, the few-nanometer-wide CNFs bearing carboxy groups were structured into a stable network via ionic inter-CNF interaction. The outline of the resulting xerogels was then tailored into a regular, millimeter-thick, board-like structure. Several characterization techniques highlighted the multifunctionality of the CNF xerogels combining outstanding strength (compression E = 170 MPa, σ = 10 MPa; tension E = 290 MPa, σ = 8 MPa), moderate light permeability, thermal insulation (0.06–0.07 W m–1 K–1), and flame self-extinction. As a potential application of the xerogels, daylighting yet insulating, load-bearing wall members can be thus proposed.
doi_str_mv 10.1021/acsnano.0c08769
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2476127353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476127353</sourcerecordid><originalsourceid>FETCH-LOGICAL-a440t-85ef1d67ceb9823880e6982e74c50653b30f89c169dddd4ab91c04308cdf962b3</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYMovtfuJEvBqSZNm6ZLGRwVxgeMgruSprczkTQZkxacX-FfNsOM7swm95LvnsvJQeiMkitKUnotVbDSuiuiiCh4uYMOacl4QgR_3_2rc3qAjkL4ICQvIrWPDhjLSC7K_BB9P4JaSKuVNGaFZ713dj7Cs9jK2sAIP0JwS-fdEPA7eDcHE7Br8VNcqsCYwbgAeAKyH7y2czzV80WPX8B3IGttdL8a4ddFbKXBDzYMRvba2RGWtsETIzvAMzBtcvvVa6vWTydor5UmwOn2PkZvk9vX8X0yfb57GN9ME5llpE9EDi1teKGgLkXKhCDAYwFFpnLCc1Yz0opSUV428WSyLqkiGSNCNW3J05odo4uN7tK7zwFCX3U6rB1JC9FslWYFp2nBchbR6w2qvAvBQ1stve6kX1WUVOsUqm0K1TaFOHG-FR_qDpo__vfbI3C5AeJk9eEGb6PXf-V-AMFYlXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476127353</pqid></control><display><type>article</type><title>Mechanically Strong, Scalable, Mesoporous Xerogels of Nanocellulose Featuring Light Permeability, Thermal Insulation, and Flame Self-Extinction</title><source>ACS Publications</source><creator>Sakuma, Wataru ; Yamasaki, Shunsuke ; Fujisawa, Shuji ; Kodama, Takashi ; Shiomi, Junichiro ; Kanamori, Kazuyoshi ; Saito, Tsuguyuki</creator><creatorcontrib>Sakuma, Wataru ; Yamasaki, Shunsuke ; Fujisawa, Shuji ; Kodama, Takashi ; Shiomi, Junichiro ; Kanamori, Kazuyoshi ; Saito, Tsuguyuki</creatorcontrib><description>Scalability is a common challenge in the structuring of nanoscale particle dispersions, particularly in the drying of these dispersions for producing functional, porous structures such as aerogels. Aerogel production relies on supercritical drying, which exhibits poor scalability. A solution to this scalability limitation is the use of evaporative drying under ambient pressure. However, the evaporative drying of wet gels comprising nanoscale particles is accompanied by a strong capillary force. Therefore, it is challenging to produce evaporative-dried gels or “xerogels” that possess the specific structural profiles of aerogels such as mesoscale pores, high porosity, and high specific surface area (SSA). Herein, we demonstrate a structure of mesoporous xerogels with high porosity (∼80%) and high SSA (&gt;400 m2 g–1) achieved by exploiting cellulose nanofibers (CNFs) as the building blocks with tunable interparticle interactions. CNFs are sustainable, wood-derived materials with high strength. In this study, the few-nanometer-wide CNFs bearing carboxy groups were structured into a stable network via ionic inter-CNF interaction. The outline of the resulting xerogels was then tailored into a regular, millimeter-thick, board-like structure. Several characterization techniques highlighted the multifunctionality of the CNF xerogels combining outstanding strength (compression E = 170 MPa, σ = 10 MPa; tension E = 290 MPa, σ = 8 MPa), moderate light permeability, thermal insulation (0.06–0.07 W m–1 K–1), and flame self-extinction. As a potential application of the xerogels, daylighting yet insulating, load-bearing wall members can be thus proposed.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.0c08769</identifier><identifier>PMID: 33405895</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2021-01, Vol.15 (1), p.1436-1444</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a440t-85ef1d67ceb9823880e6982e74c50653b30f89c169dddd4ab91c04308cdf962b3</citedby><cites>FETCH-LOGICAL-a440t-85ef1d67ceb9823880e6982e74c50653b30f89c169dddd4ab91c04308cdf962b3</cites><orcidid>0000-0001-5087-9808 ; 0000-0002-8753-5766 ; 0000-0003-1073-6663 ; 0000-0001-8188-0123 ; 0000-0002-3552-4555 ; 0000-0002-5221-6781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.0c08769$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.0c08769$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33405895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakuma, Wataru</creatorcontrib><creatorcontrib>Yamasaki, Shunsuke</creatorcontrib><creatorcontrib>Fujisawa, Shuji</creatorcontrib><creatorcontrib>Kodama, Takashi</creatorcontrib><creatorcontrib>Shiomi, Junichiro</creatorcontrib><creatorcontrib>Kanamori, Kazuyoshi</creatorcontrib><creatorcontrib>Saito, Tsuguyuki</creatorcontrib><title>Mechanically Strong, Scalable, Mesoporous Xerogels of Nanocellulose Featuring Light Permeability, Thermal Insulation, and Flame Self-Extinction</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Scalability is a common challenge in the structuring of nanoscale particle dispersions, particularly in the drying of these dispersions for producing functional, porous structures such as aerogels. Aerogel production relies on supercritical drying, which exhibits poor scalability. A solution to this scalability limitation is the use of evaporative drying under ambient pressure. However, the evaporative drying of wet gels comprising nanoscale particles is accompanied by a strong capillary force. Therefore, it is challenging to produce evaporative-dried gels or “xerogels” that possess the specific structural profiles of aerogels such as mesoscale pores, high porosity, and high specific surface area (SSA). Herein, we demonstrate a structure of mesoporous xerogels with high porosity (∼80%) and high SSA (&gt;400 m2 g–1) achieved by exploiting cellulose nanofibers (CNFs) as the building blocks with tunable interparticle interactions. CNFs are sustainable, wood-derived materials with high strength. In this study, the few-nanometer-wide CNFs bearing carboxy groups were structured into a stable network via ionic inter-CNF interaction. The outline of the resulting xerogels was then tailored into a regular, millimeter-thick, board-like structure. Several characterization techniques highlighted the multifunctionality of the CNF xerogels combining outstanding strength (compression E = 170 MPa, σ = 10 MPa; tension E = 290 MPa, σ = 8 MPa), moderate light permeability, thermal insulation (0.06–0.07 W m–1 K–1), and flame self-extinction. As a potential application of the xerogels, daylighting yet insulating, load-bearing wall members can be thus proposed.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLxDAUhYMovtfuJEvBqSZNm6ZLGRwVxgeMgruSprczkTQZkxacX-FfNsOM7swm95LvnsvJQeiMkitKUnotVbDSuiuiiCh4uYMOacl4QgR_3_2rc3qAjkL4ICQvIrWPDhjLSC7K_BB9P4JaSKuVNGaFZ713dj7Cs9jK2sAIP0JwS-fdEPA7eDcHE7Br8VNcqsCYwbgAeAKyH7y2czzV80WPX8B3IGttdL8a4ddFbKXBDzYMRvba2RGWtsETIzvAMzBtcvvVa6vWTydor5UmwOn2PkZvk9vX8X0yfb57GN9ME5llpE9EDi1teKGgLkXKhCDAYwFFpnLCc1Yz0opSUV428WSyLqkiGSNCNW3J05odo4uN7tK7zwFCX3U6rB1JC9FslWYFp2nBchbR6w2qvAvBQ1stve6kX1WUVOsUqm0K1TaFOHG-FR_qDpo__vfbI3C5AeJk9eEGb6PXf-V-AMFYlXA</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Sakuma, Wataru</creator><creator>Yamasaki, Shunsuke</creator><creator>Fujisawa, Shuji</creator><creator>Kodama, Takashi</creator><creator>Shiomi, Junichiro</creator><creator>Kanamori, Kazuyoshi</creator><creator>Saito, Tsuguyuki</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5087-9808</orcidid><orcidid>https://orcid.org/0000-0002-8753-5766</orcidid><orcidid>https://orcid.org/0000-0003-1073-6663</orcidid><orcidid>https://orcid.org/0000-0001-8188-0123</orcidid><orcidid>https://orcid.org/0000-0002-3552-4555</orcidid><orcidid>https://orcid.org/0000-0002-5221-6781</orcidid></search><sort><creationdate>20210126</creationdate><title>Mechanically Strong, Scalable, Mesoporous Xerogels of Nanocellulose Featuring Light Permeability, Thermal Insulation, and Flame Self-Extinction</title><author>Sakuma, Wataru ; Yamasaki, Shunsuke ; Fujisawa, Shuji ; Kodama, Takashi ; Shiomi, Junichiro ; Kanamori, Kazuyoshi ; Saito, Tsuguyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a440t-85ef1d67ceb9823880e6982e74c50653b30f89c169dddd4ab91c04308cdf962b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakuma, Wataru</creatorcontrib><creatorcontrib>Yamasaki, Shunsuke</creatorcontrib><creatorcontrib>Fujisawa, Shuji</creatorcontrib><creatorcontrib>Kodama, Takashi</creatorcontrib><creatorcontrib>Shiomi, Junichiro</creatorcontrib><creatorcontrib>Kanamori, Kazuyoshi</creatorcontrib><creatorcontrib>Saito, Tsuguyuki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakuma, Wataru</au><au>Yamasaki, Shunsuke</au><au>Fujisawa, Shuji</au><au>Kodama, Takashi</au><au>Shiomi, Junichiro</au><au>Kanamori, Kazuyoshi</au><au>Saito, Tsuguyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanically Strong, Scalable, Mesoporous Xerogels of Nanocellulose Featuring Light Permeability, Thermal Insulation, and Flame Self-Extinction</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-01-26</date><risdate>2021</risdate><volume>15</volume><issue>1</issue><spage>1436</spage><epage>1444</epage><pages>1436-1444</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Scalability is a common challenge in the structuring of nanoscale particle dispersions, particularly in the drying of these dispersions for producing functional, porous structures such as aerogels. Aerogel production relies on supercritical drying, which exhibits poor scalability. A solution to this scalability limitation is the use of evaporative drying under ambient pressure. However, the evaporative drying of wet gels comprising nanoscale particles is accompanied by a strong capillary force. Therefore, it is challenging to produce evaporative-dried gels or “xerogels” that possess the specific structural profiles of aerogels such as mesoscale pores, high porosity, and high specific surface area (SSA). Herein, we demonstrate a structure of mesoporous xerogels with high porosity (∼80%) and high SSA (&gt;400 m2 g–1) achieved by exploiting cellulose nanofibers (CNFs) as the building blocks with tunable interparticle interactions. CNFs are sustainable, wood-derived materials with high strength. In this study, the few-nanometer-wide CNFs bearing carboxy groups were structured into a stable network via ionic inter-CNF interaction. The outline of the resulting xerogels was then tailored into a regular, millimeter-thick, board-like structure. Several characterization techniques highlighted the multifunctionality of the CNF xerogels combining outstanding strength (compression E = 170 MPa, σ = 10 MPa; tension E = 290 MPa, σ = 8 MPa), moderate light permeability, thermal insulation (0.06–0.07 W m–1 K–1), and flame self-extinction. As a potential application of the xerogels, daylighting yet insulating, load-bearing wall members can be thus proposed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33405895</pmid><doi>10.1021/acsnano.0c08769</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5087-9808</orcidid><orcidid>https://orcid.org/0000-0002-8753-5766</orcidid><orcidid>https://orcid.org/0000-0003-1073-6663</orcidid><orcidid>https://orcid.org/0000-0001-8188-0123</orcidid><orcidid>https://orcid.org/0000-0002-3552-4555</orcidid><orcidid>https://orcid.org/0000-0002-5221-6781</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-01, Vol.15 (1), p.1436-1444
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2476127353
source ACS Publications
title Mechanically Strong, Scalable, Mesoporous Xerogels of Nanocellulose Featuring Light Permeability, Thermal Insulation, and Flame Self-Extinction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanically%20Strong,%20Scalable,%20Mesoporous%20Xerogels%20of%20Nanocellulose%20Featuring%20Light%20Permeability,%20Thermal%20Insulation,%20and%20Flame%20Self-Extinction&rft.jtitle=ACS%20nano&rft.au=Sakuma,%20Wataru&rft.date=2021-01-26&rft.volume=15&rft.issue=1&rft.spage=1436&rft.epage=1444&rft.pages=1436-1444&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.0c08769&rft_dat=%3Cproquest_cross%3E2476127353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476127353&rft_id=info:pmid/33405895&rfr_iscdi=true