Fiber Density Modulates Cell Spreading in 3D Interstitial Matrix Mimetics

Cellular phenotype is heavily influenced by the extracellular matrix (ECM), a complex and tissue-specific three-dimensional structure with distinct biophysical and biochemical properties. As naturally derived cell culture platforms are difficult to controllably modulate, engineered synthetic ECMs ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS biomaterials science & engineering 2019-06, Vol.5 (6), p.2965-2975
Hauptverfasser: Matera, Daniel L, Wang, William Y, Smith, Makenzee R, Shikanov, Ariella, Baker, Brendon M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2975
container_issue 6
container_start_page 2965
container_title ACS biomaterials science & engineering
container_volume 5
creator Matera, Daniel L
Wang, William Y
Smith, Makenzee R
Shikanov, Ariella
Baker, Brendon M
description Cellular phenotype is heavily influenced by the extracellular matrix (ECM), a complex and tissue-specific three-dimensional structure with distinct biophysical and biochemical properties. As naturally derived cell culture platforms are difficult to controllably modulate, engineered synthetic ECMs have facilitated our understanding of how specific matrix properties direct cell behavior. However, synthetic approaches typically lack fibrous topography, a hallmark of stromal and interstitial ECMs in vivo. To construct tunable biomimetic models with physiologic microstructure, we developed a versatile approach to generate modular fibrous architectures in 3D. Photo-cross-linkable polymers were electrospun, photopatterned into desired lengths, and coencapsulated alongside cells within natural biopolymer, semisynthetic, and synthetic hydrogels. Cells encapsulated within fiber-reinforced hydrogel composites (FHCs) demonstrated accelerated spreading rates compared to in gels lacking such fibrous topography. Furthermore, increases in fiber density at constant bulk hydrogel elastic modulus produced morphologically distinct cell populations and modulated cellular mechanosensing in 3D, as evidenced by increased nuclear localization of the mechanosensitive transcription factor, Yes-associated protein (YAP). This work documents the impact of physical guidance cues in 3D and establishes a novel approach to generating more physiologic tissue- and disease-specific biomimetic models.
doi_str_mv 10.1021/acsbiomaterials.9b00141
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2476127288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476127288</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-4111004aa8555bc9d0b73b4406d6e8c73aab9ffa9e9f6eec0559128b133d2b113</originalsourceid><addsrcrecordid>eNqFkMtOAyEUhonR2Kb2FZSlm6kwwABL01pt0saFuiYwwxiauVRgEvv20rQa48bVOYvvv-QH4AajGUY5vtNlMK5vdbTe6SbMpEEIU3wGxjnhJJOCi_Nf_whMQ9iixBDBKKWXYEQIRYxJOQarpTPWw4Xtgot7uOmroUnGAc5t08CXnbe6ct07dB0kC7jqUmaILqZcuNHRu0-4ca2NrgxX4KJObez0dCfgbfnwOn_K1s-Pq_n9OtOE8ZhRjDFCVGvBGDOlrJDhxFCKiqqwouREayPrWksr68La8tAT58JgQqrcYEwm4Pbou_P9x2BDVK0LZWqrO9sPQeWUFzjnuRAJ5Ue09H0I3tZq512r_V5hpA5Tqj9TqtOUSXl9ChlMa6sf3fdwCSBHIDmobT_47iD_z_YLus2FXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476127288</pqid></control><display><type>article</type><title>Fiber Density Modulates Cell Spreading in 3D Interstitial Matrix Mimetics</title><source>American Chemical Society Journals</source><creator>Matera, Daniel L ; Wang, William Y ; Smith, Makenzee R ; Shikanov, Ariella ; Baker, Brendon M</creator><creatorcontrib>Matera, Daniel L ; Wang, William Y ; Smith, Makenzee R ; Shikanov, Ariella ; Baker, Brendon M</creatorcontrib><description>Cellular phenotype is heavily influenced by the extracellular matrix (ECM), a complex and tissue-specific three-dimensional structure with distinct biophysical and biochemical properties. As naturally derived cell culture platforms are difficult to controllably modulate, engineered synthetic ECMs have facilitated our understanding of how specific matrix properties direct cell behavior. However, synthetic approaches typically lack fibrous topography, a hallmark of stromal and interstitial ECMs in vivo. To construct tunable biomimetic models with physiologic microstructure, we developed a versatile approach to generate modular fibrous architectures in 3D. Photo-cross-linkable polymers were electrospun, photopatterned into desired lengths, and coencapsulated alongside cells within natural biopolymer, semisynthetic, and synthetic hydrogels. Cells encapsulated within fiber-reinforced hydrogel composites (FHCs) demonstrated accelerated spreading rates compared to in gels lacking such fibrous topography. Furthermore, increases in fiber density at constant bulk hydrogel elastic modulus produced morphologically distinct cell populations and modulated cellular mechanosensing in 3D, as evidenced by increased nuclear localization of the mechanosensitive transcription factor, Yes-associated protein (YAP). This work documents the impact of physical guidance cues in 3D and establishes a novel approach to generating more physiologic tissue- and disease-specific biomimetic models.</description><identifier>ISSN: 2373-9878</identifier><identifier>EISSN: 2373-9878</identifier><identifier>DOI: 10.1021/acsbiomaterials.9b00141</identifier><identifier>PMID: 33405599</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS biomaterials science &amp; engineering, 2019-06, Vol.5 (6), p.2965-2975</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-4111004aa8555bc9d0b73b4406d6e8c73aab9ffa9e9f6eec0559128b133d2b113</citedby><cites>FETCH-LOGICAL-a357t-4111004aa8555bc9d0b73b4406d6e8c73aab9ffa9e9f6eec0559128b133d2b113</cites><orcidid>0000-0002-2785-1070 ; 0000-0001-9669-4841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsbiomaterials.9b00141$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsbiomaterials.9b00141$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33405599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matera, Daniel L</creatorcontrib><creatorcontrib>Wang, William Y</creatorcontrib><creatorcontrib>Smith, Makenzee R</creatorcontrib><creatorcontrib>Shikanov, Ariella</creatorcontrib><creatorcontrib>Baker, Brendon M</creatorcontrib><title>Fiber Density Modulates Cell Spreading in 3D Interstitial Matrix Mimetics</title><title>ACS biomaterials science &amp; engineering</title><addtitle>ACS Biomater. Sci. Eng</addtitle><description>Cellular phenotype is heavily influenced by the extracellular matrix (ECM), a complex and tissue-specific three-dimensional structure with distinct biophysical and biochemical properties. As naturally derived cell culture platforms are difficult to controllably modulate, engineered synthetic ECMs have facilitated our understanding of how specific matrix properties direct cell behavior. However, synthetic approaches typically lack fibrous topography, a hallmark of stromal and interstitial ECMs in vivo. To construct tunable biomimetic models with physiologic microstructure, we developed a versatile approach to generate modular fibrous architectures in 3D. Photo-cross-linkable polymers were electrospun, photopatterned into desired lengths, and coencapsulated alongside cells within natural biopolymer, semisynthetic, and synthetic hydrogels. Cells encapsulated within fiber-reinforced hydrogel composites (FHCs) demonstrated accelerated spreading rates compared to in gels lacking such fibrous topography. Furthermore, increases in fiber density at constant bulk hydrogel elastic modulus produced morphologically distinct cell populations and modulated cellular mechanosensing in 3D, as evidenced by increased nuclear localization of the mechanosensitive transcription factor, Yes-associated protein (YAP). This work documents the impact of physical guidance cues in 3D and establishes a novel approach to generating more physiologic tissue- and disease-specific biomimetic models.</description><issn>2373-9878</issn><issn>2373-9878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOAyEUhonR2Kb2FZSlm6kwwABL01pt0saFuiYwwxiauVRgEvv20rQa48bVOYvvv-QH4AajGUY5vtNlMK5vdbTe6SbMpEEIU3wGxjnhJJOCi_Nf_whMQ9iixBDBKKWXYEQIRYxJOQarpTPWw4Xtgot7uOmroUnGAc5t08CXnbe6ct07dB0kC7jqUmaILqZcuNHRu0-4ca2NrgxX4KJObez0dCfgbfnwOn_K1s-Pq_n9OtOE8ZhRjDFCVGvBGDOlrJDhxFCKiqqwouREayPrWksr68La8tAT58JgQqrcYEwm4Pbou_P9x2BDVK0LZWqrO9sPQeWUFzjnuRAJ5Ue09H0I3tZq512r_V5hpA5Tqj9TqtOUSXl9ChlMa6sf3fdwCSBHIDmobT_47iD_z_YLus2FXA</recordid><startdate>20190610</startdate><enddate>20190610</enddate><creator>Matera, Daniel L</creator><creator>Wang, William Y</creator><creator>Smith, Makenzee R</creator><creator>Shikanov, Ariella</creator><creator>Baker, Brendon M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2785-1070</orcidid><orcidid>https://orcid.org/0000-0001-9669-4841</orcidid></search><sort><creationdate>20190610</creationdate><title>Fiber Density Modulates Cell Spreading in 3D Interstitial Matrix Mimetics</title><author>Matera, Daniel L ; Wang, William Y ; Smith, Makenzee R ; Shikanov, Ariella ; Baker, Brendon M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-4111004aa8555bc9d0b73b4406d6e8c73aab9ffa9e9f6eec0559128b133d2b113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Matera, Daniel L</creatorcontrib><creatorcontrib>Wang, William Y</creatorcontrib><creatorcontrib>Smith, Makenzee R</creatorcontrib><creatorcontrib>Shikanov, Ariella</creatorcontrib><creatorcontrib>Baker, Brendon M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS biomaterials science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matera, Daniel L</au><au>Wang, William Y</au><au>Smith, Makenzee R</au><au>Shikanov, Ariella</au><au>Baker, Brendon M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber Density Modulates Cell Spreading in 3D Interstitial Matrix Mimetics</atitle><jtitle>ACS biomaterials science &amp; engineering</jtitle><addtitle>ACS Biomater. Sci. Eng</addtitle><date>2019-06-10</date><risdate>2019</risdate><volume>5</volume><issue>6</issue><spage>2965</spage><epage>2975</epage><pages>2965-2975</pages><issn>2373-9878</issn><eissn>2373-9878</eissn><abstract>Cellular phenotype is heavily influenced by the extracellular matrix (ECM), a complex and tissue-specific three-dimensional structure with distinct biophysical and biochemical properties. As naturally derived cell culture platforms are difficult to controllably modulate, engineered synthetic ECMs have facilitated our understanding of how specific matrix properties direct cell behavior. However, synthetic approaches typically lack fibrous topography, a hallmark of stromal and interstitial ECMs in vivo. To construct tunable biomimetic models with physiologic microstructure, we developed a versatile approach to generate modular fibrous architectures in 3D. Photo-cross-linkable polymers were electrospun, photopatterned into desired lengths, and coencapsulated alongside cells within natural biopolymer, semisynthetic, and synthetic hydrogels. Cells encapsulated within fiber-reinforced hydrogel composites (FHCs) demonstrated accelerated spreading rates compared to in gels lacking such fibrous topography. Furthermore, increases in fiber density at constant bulk hydrogel elastic modulus produced morphologically distinct cell populations and modulated cellular mechanosensing in 3D, as evidenced by increased nuclear localization of the mechanosensitive transcription factor, Yes-associated protein (YAP). This work documents the impact of physical guidance cues in 3D and establishes a novel approach to generating more physiologic tissue- and disease-specific biomimetic models.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33405599</pmid><doi>10.1021/acsbiomaterials.9b00141</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2785-1070</orcidid><orcidid>https://orcid.org/0000-0001-9669-4841</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2373-9878
ispartof ACS biomaterials science & engineering, 2019-06, Vol.5 (6), p.2965-2975
issn 2373-9878
2373-9878
language eng
recordid cdi_proquest_miscellaneous_2476127288
source American Chemical Society Journals
title Fiber Density Modulates Cell Spreading in 3D Interstitial Matrix Mimetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber%20Density%20Modulates%20Cell%20Spreading%20in%203D%20Interstitial%20Matrix%20Mimetics&rft.jtitle=ACS%20biomaterials%20science%20&%20engineering&rft.au=Matera,%20Daniel%20L&rft.date=2019-06-10&rft.volume=5&rft.issue=6&rft.spage=2965&rft.epage=2975&rft.pages=2965-2975&rft.issn=2373-9878&rft.eissn=2373-9878&rft_id=info:doi/10.1021/acsbiomaterials.9b00141&rft_dat=%3Cproquest_cross%3E2476127288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476127288&rft_id=info:pmid/33405599&rfr_iscdi=true