The reliability of radiographic measures of total ankle replacement position: an analysis from the OARS cohort

Objective There is no validated radiographic measurement to diagnose prosthetic complication(s) following total ankle replacements (TARs) although a number of angular and linear measurements, used to define the TAR position on postoperative radiographs, have been recommended to detect prosthetic loo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Skeletal radiology 2021-07, Vol.50 (7), p.1411-1417
Hauptverfasser: Low, Samantha Bee Lian, Kim, Matthew, Smith, Toby, Loveday, David, MacGregor, Alex, Toms, Andoni P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1417
container_issue 7
container_start_page 1411
container_title Skeletal radiology
container_volume 50
creator Low, Samantha Bee Lian
Kim, Matthew
Smith, Toby
Loveday, David
MacGregor, Alex
Toms, Andoni P.
description Objective There is no validated radiographic measurement to diagnose prosthetic complication(s) following total ankle replacements (TARs) although a number of angular and linear measurements, used to define the TAR position on postoperative radiographs, have been recommended to detect prosthetic loosening. The aim of this study was to test the intra- and interobserver reliability of these measurements. Materials and methods This is a prospective study embedded within a multicentre cohort study. Following sample size calculation, 62 patients were analysed. Six measurements were performed on the first postoperative anteroposterior and lateral ankle radiographs: angles α and β , and length “ a ” defined the craniocaudal position of the tibial component, while angle γ , and lengths “ b ” and “ c ” defined the angular position of the talar component. Measurements were recorded by three independent observers. Inter- and intraobserver reliability was assessed with intraclass correlation coefficient (ICC), Bland-Altman plots, and within-subject coefficients of variation (CV). Results The intrarater ICC was “almost perfect” (ICC 0.83–0.97) for all six measurements. The interrater ICC was “substantial” to “almost perfect” (ICC 0.69–0.93). The mean difference in intrarater angular measurements was ≤ 0.6° and ≤ 0.8 mm for linear measurements, and ≤ 2.2° and ≤ 2.1 mm for interrater measurements. Maximum CV for the interrater linear measurements (≤ 17.7%) more than doubled that of the angular measurements (≤ 8.0%). The maximum width of the 95% limits of agreement was 6.5° and 8.4 mm for intrarater measures, and 8.9° and 10.6 mm for interrater measurements. Conclusion Angular measures are more reliable than linear measures and have potential in routine clinical practice for TAR position assessment.
doi_str_mv 10.1007/s00256-020-03704-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475533178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A731360634</galeid><sourcerecordid>A731360634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-c5052836a69864265c92f7c4a9d4eddadc82efce390be6a3175e4785029477e03</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoModlv9A17IgDdCmXomnzPeLYtfUChovQ7ZzJnd1JnJmmQo--_NOLVFETEJCSTPc0jyEvKigosKQL2JAFTIEiiUwBTwUjwiq4ozWtJKVo_JCpjkJWW8PiGnMd4AVEoJ-ZScMMaBS6lWZLzeYxGwd2brepeOhe-KYFrnd8Ec9s4WA5o4BYzzQfLJ9IUZv_Wzc-iNxQHHVBx8dMn58W0-y8P0x-hi0QU_FCmXv1p__lJYv_chPSNPOtNHfH63npGv799dbz6Wl1cfPm3Wl6UVjKc8g6A1k0Y2teRUCtvQTllumpZj25rW1hQ7i6yBLUrDKiWQq1oAbbhSCOyMvF7qHoL_PmFMenDRYt-bEf0UNeVKCJa9OqOv_kBv_BTyIzIlqOQ1r1jzQO1Mj9qNnU_B2LmoXitWMQmS8Uxd_IXKvcXBWT9i5_L-bwJdBBt8jAE7fQhuMOGoK9BzyHoJWeeQ9c-QtcjSy7sbT9sB23vlV6oZqBfgFre-i9bhaPEeAwAJQgCDubGNS2YOb-OnMWX1_P_VTLOFjpkYdxge_u4f9_8BFiHQfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526484139</pqid></control><display><type>article</type><title>The reliability of radiographic measures of total ankle replacement position: an analysis from the OARS cohort</title><source>SpringerNature Journals</source><creator>Low, Samantha Bee Lian ; Kim, Matthew ; Smith, Toby ; Loveday, David ; MacGregor, Alex ; Toms, Andoni P.</creator><creatorcontrib>Low, Samantha Bee Lian ; Kim, Matthew ; Smith, Toby ; Loveday, David ; MacGregor, Alex ; Toms, Andoni P.</creatorcontrib><description>Objective There is no validated radiographic measurement to diagnose prosthetic complication(s) following total ankle replacements (TARs) although a number of angular and linear measurements, used to define the TAR position on postoperative radiographs, have been recommended to detect prosthetic loosening. The aim of this study was to test the intra- and interobserver reliability of these measurements. Materials and methods This is a prospective study embedded within a multicentre cohort study. Following sample size calculation, 62 patients were analysed. Six measurements were performed on the first postoperative anteroposterior and lateral ankle radiographs: angles α and β , and length “ a ” defined the craniocaudal position of the tibial component, while angle γ , and lengths “ b ” and “ c ” defined the angular position of the talar component. Measurements were recorded by three independent observers. Inter- and intraobserver reliability was assessed with intraclass correlation coefficient (ICC), Bland-Altman plots, and within-subject coefficients of variation (CV). Results The intrarater ICC was “almost perfect” (ICC 0.83–0.97) for all six measurements. The interrater ICC was “substantial” to “almost perfect” (ICC 0.69–0.93). The mean difference in intrarater angular measurements was ≤ 0.6° and ≤ 0.8 mm for linear measurements, and ≤ 2.2° and ≤ 2.1 mm for interrater measurements. Maximum CV for the interrater linear measurements (≤ 17.7%) more than doubled that of the angular measurements (≤ 8.0%). The maximum width of the 95% limits of agreement was 6.5° and 8.4 mm for intrarater measures, and 8.9° and 10.6 mm for interrater measurements. Conclusion Angular measures are more reliable than linear measures and have potential in routine clinical practice for TAR position assessment.</description><identifier>ISSN: 0364-2348</identifier><identifier>EISSN: 1432-2161</identifier><identifier>DOI: 10.1007/s00256-020-03704-5</identifier><identifier>PMID: 33404667</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Angular position ; Ankle ; Coefficient of variation ; Component reliability ; Correlation coefficients ; Imaging ; Implants, Artificial ; Life Sciences &amp; Biomedicine ; Loosening ; Mathematical analysis ; Measurement ; Medicine ; Medicine &amp; Public Health ; Nuclear Medicine ; Orthopedics ; Pathology ; Position measurement ; Prostheses ; Prosthesis ; Radiographs ; Radiography ; Radiology ; Radiology, Nuclear Medicine &amp; Medical Imaging ; Reliability analysis ; Science &amp; Technology ; Scientific Article ; Tars ; Tibial components</subject><ispartof>Skeletal radiology, 2021-07, Vol.50 (7), p.1411-1417</ispartof><rights>ISS 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>ISS 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000605503000003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c534t-c5052836a69864265c92f7c4a9d4eddadc82efce390be6a3175e4785029477e03</citedby><cites>FETCH-LOGICAL-c534t-c5052836a69864265c92f7c4a9d4eddadc82efce390be6a3175e4785029477e03</cites><orcidid>0000-0003-1673-2954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00256-020-03704-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00256-020-03704-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33404667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Low, Samantha Bee Lian</creatorcontrib><creatorcontrib>Kim, Matthew</creatorcontrib><creatorcontrib>Smith, Toby</creatorcontrib><creatorcontrib>Loveday, David</creatorcontrib><creatorcontrib>MacGregor, Alex</creatorcontrib><creatorcontrib>Toms, Andoni P.</creatorcontrib><title>The reliability of radiographic measures of total ankle replacement position: an analysis from the OARS cohort</title><title>Skeletal radiology</title><addtitle>Skeletal Radiol</addtitle><addtitle>SKELETAL RADIOL</addtitle><addtitle>Skeletal Radiol</addtitle><description>Objective There is no validated radiographic measurement to diagnose prosthetic complication(s) following total ankle replacements (TARs) although a number of angular and linear measurements, used to define the TAR position on postoperative radiographs, have been recommended to detect prosthetic loosening. The aim of this study was to test the intra- and interobserver reliability of these measurements. Materials and methods This is a prospective study embedded within a multicentre cohort study. Following sample size calculation, 62 patients were analysed. Six measurements were performed on the first postoperative anteroposterior and lateral ankle radiographs: angles α and β , and length “ a ” defined the craniocaudal position of the tibial component, while angle γ , and lengths “ b ” and “ c ” defined the angular position of the talar component. Measurements were recorded by three independent observers. Inter- and intraobserver reliability was assessed with intraclass correlation coefficient (ICC), Bland-Altman plots, and within-subject coefficients of variation (CV). Results The intrarater ICC was “almost perfect” (ICC 0.83–0.97) for all six measurements. The interrater ICC was “substantial” to “almost perfect” (ICC 0.69–0.93). The mean difference in intrarater angular measurements was ≤ 0.6° and ≤ 0.8 mm for linear measurements, and ≤ 2.2° and ≤ 2.1 mm for interrater measurements. Maximum CV for the interrater linear measurements (≤ 17.7%) more than doubled that of the angular measurements (≤ 8.0%). The maximum width of the 95% limits of agreement was 6.5° and 8.4 mm for intrarater measures, and 8.9° and 10.6 mm for interrater measurements. Conclusion Angular measures are more reliable than linear measures and have potential in routine clinical practice for TAR position assessment.</description><subject>Analysis</subject><subject>Angular position</subject><subject>Ankle</subject><subject>Coefficient of variation</subject><subject>Component reliability</subject><subject>Correlation coefficients</subject><subject>Imaging</subject><subject>Implants, Artificial</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Loosening</subject><subject>Mathematical analysis</subject><subject>Measurement</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Nuclear Medicine</subject><subject>Orthopedics</subject><subject>Pathology</subject><subject>Position measurement</subject><subject>Prostheses</subject><subject>Prosthesis</subject><subject>Radiographs</subject><subject>Radiography</subject><subject>Radiology</subject><subject>Radiology, Nuclear Medicine &amp; Medical Imaging</subject><subject>Reliability analysis</subject><subject>Science &amp; Technology</subject><subject>Scientific Article</subject><subject>Tars</subject><subject>Tibial components</subject><issn>0364-2348</issn><issn>1432-2161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV1rFDEUhoModlv9A17IgDdCmXomnzPeLYtfUChovQ7ZzJnd1JnJmmQo--_NOLVFETEJCSTPc0jyEvKigosKQL2JAFTIEiiUwBTwUjwiq4ozWtJKVo_JCpjkJWW8PiGnMd4AVEoJ-ZScMMaBS6lWZLzeYxGwd2brepeOhe-KYFrnd8Ec9s4WA5o4BYzzQfLJ9IUZv_Wzc-iNxQHHVBx8dMn58W0-y8P0x-hi0QU_FCmXv1p__lJYv_chPSNPOtNHfH63npGv799dbz6Wl1cfPm3Wl6UVjKc8g6A1k0Y2teRUCtvQTllumpZj25rW1hQ7i6yBLUrDKiWQq1oAbbhSCOyMvF7qHoL_PmFMenDRYt-bEf0UNeVKCJa9OqOv_kBv_BTyIzIlqOQ1r1jzQO1Mj9qNnU_B2LmoXitWMQmS8Uxd_IXKvcXBWT9i5_L-bwJdBBt8jAE7fQhuMOGoK9BzyHoJWeeQ9c-QtcjSy7sbT9sB23vlV6oZqBfgFre-i9bhaPEeAwAJQgCDubGNS2YOb-OnMWX1_P_VTLOFjpkYdxge_u4f9_8BFiHQfA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Low, Samantha Bee Lian</creator><creator>Kim, Matthew</creator><creator>Smith, Toby</creator><creator>Loveday, David</creator><creator>MacGregor, Alex</creator><creator>Toms, Andoni P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1673-2954</orcidid></search><sort><creationdate>20210701</creationdate><title>The reliability of radiographic measures of total ankle replacement position: an analysis from the OARS cohort</title><author>Low, Samantha Bee Lian ; Kim, Matthew ; Smith, Toby ; Loveday, David ; MacGregor, Alex ; Toms, Andoni P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-c5052836a69864265c92f7c4a9d4eddadc82efce390be6a3175e4785029477e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Angular position</topic><topic>Ankle</topic><topic>Coefficient of variation</topic><topic>Component reliability</topic><topic>Correlation coefficients</topic><topic>Imaging</topic><topic>Implants, Artificial</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Loosening</topic><topic>Mathematical analysis</topic><topic>Measurement</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Nuclear Medicine</topic><topic>Orthopedics</topic><topic>Pathology</topic><topic>Position measurement</topic><topic>Prostheses</topic><topic>Prosthesis</topic><topic>Radiographs</topic><topic>Radiography</topic><topic>Radiology</topic><topic>Radiology, Nuclear Medicine &amp; Medical Imaging</topic><topic>Reliability analysis</topic><topic>Science &amp; Technology</topic><topic>Scientific Article</topic><topic>Tars</topic><topic>Tibial components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Low, Samantha Bee Lian</creatorcontrib><creatorcontrib>Kim, Matthew</creatorcontrib><creatorcontrib>Smith, Toby</creatorcontrib><creatorcontrib>Loveday, David</creatorcontrib><creatorcontrib>MacGregor, Alex</creatorcontrib><creatorcontrib>Toms, Andoni P.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Skeletal radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Low, Samantha Bee Lian</au><au>Kim, Matthew</au><au>Smith, Toby</au><au>Loveday, David</au><au>MacGregor, Alex</au><au>Toms, Andoni P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The reliability of radiographic measures of total ankle replacement position: an analysis from the OARS cohort</atitle><jtitle>Skeletal radiology</jtitle><stitle>Skeletal Radiol</stitle><stitle>SKELETAL RADIOL</stitle><addtitle>Skeletal Radiol</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>50</volume><issue>7</issue><spage>1411</spage><epage>1417</epage><pages>1411-1417</pages><issn>0364-2348</issn><eissn>1432-2161</eissn><abstract>Objective There is no validated radiographic measurement to diagnose prosthetic complication(s) following total ankle replacements (TARs) although a number of angular and linear measurements, used to define the TAR position on postoperative radiographs, have been recommended to detect prosthetic loosening. The aim of this study was to test the intra- and interobserver reliability of these measurements. Materials and methods This is a prospective study embedded within a multicentre cohort study. Following sample size calculation, 62 patients were analysed. Six measurements were performed on the first postoperative anteroposterior and lateral ankle radiographs: angles α and β , and length “ a ” defined the craniocaudal position of the tibial component, while angle γ , and lengths “ b ” and “ c ” defined the angular position of the talar component. Measurements were recorded by three independent observers. Inter- and intraobserver reliability was assessed with intraclass correlation coefficient (ICC), Bland-Altman plots, and within-subject coefficients of variation (CV). Results The intrarater ICC was “almost perfect” (ICC 0.83–0.97) for all six measurements. The interrater ICC was “substantial” to “almost perfect” (ICC 0.69–0.93). The mean difference in intrarater angular measurements was ≤ 0.6° and ≤ 0.8 mm for linear measurements, and ≤ 2.2° and ≤ 2.1 mm for interrater measurements. Maximum CV for the interrater linear measurements (≤ 17.7%) more than doubled that of the angular measurements (≤ 8.0%). The maximum width of the 95% limits of agreement was 6.5° and 8.4 mm for intrarater measures, and 8.9° and 10.6 mm for interrater measurements. Conclusion Angular measures are more reliable than linear measures and have potential in routine clinical practice for TAR position assessment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33404667</pmid><doi>10.1007/s00256-020-03704-5</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1673-2954</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-2348
ispartof Skeletal radiology, 2021-07, Vol.50 (7), p.1411-1417
issn 0364-2348
1432-2161
language eng
recordid cdi_proquest_miscellaneous_2475533178
source SpringerNature Journals
subjects Analysis
Angular position
Ankle
Coefficient of variation
Component reliability
Correlation coefficients
Imaging
Implants, Artificial
Life Sciences & Biomedicine
Loosening
Mathematical analysis
Measurement
Medicine
Medicine & Public Health
Nuclear Medicine
Orthopedics
Pathology
Position measurement
Prostheses
Prosthesis
Radiographs
Radiography
Radiology
Radiology, Nuclear Medicine & Medical Imaging
Reliability analysis
Science & Technology
Scientific Article
Tars
Tibial components
title The reliability of radiographic measures of total ankle replacement position: an analysis from the OARS cohort
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20reliability%20of%20radiographic%20measures%20of%20total%20ankle%20replacement%20position:%20an%20analysis%20from%20the%20OARS%20cohort&rft.jtitle=Skeletal%20radiology&rft.au=Low,%20Samantha%20Bee%20Lian&rft.date=2021-07-01&rft.volume=50&rft.issue=7&rft.spage=1411&rft.epage=1417&rft.pages=1411-1417&rft.issn=0364-2348&rft.eissn=1432-2161&rft_id=info:doi/10.1007/s00256-020-03704-5&rft_dat=%3Cgale_proqu%3EA731360634%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526484139&rft_id=info:pmid/33404667&rft_galeid=A731360634&rfr_iscdi=true