Boundary-Condition Analysis of an Idealized Left Atrium Model
The most common type of cardiac arrhythmia is atrial fibrillation (AF), which is characterised by irregular and ineffective atrial contraction. This behaviour results into the formation of thrombi, mainly in the left atrial appendage (LAA), responsible for thromboembolic events. Very different appro...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2021-06, Vol.49 (6), p.1507-1520 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1520 |
---|---|
container_issue | 6 |
container_start_page | 1507 |
container_title | Annals of biomedical engineering |
container_volume | 49 |
creator | Dueñas-Pamplona, Jorge Sierra-Pallares, José García, Javier Castro, Francisco Munoz-Paniagua, Jorge |
description | The most common type of cardiac arrhythmia is atrial fibrillation (AF), which is characterised by irregular and ineffective atrial contraction. This behaviour results into the formation of thrombi, mainly in the left atrial appendage (LAA), responsible for thromboembolic events. Very different approaches are considered as therapy for AF patients. Therefore, it is necessary to yield insight into the flow physics of thrombi formation to determine which is the most appropriate strategy in each case. Computational Fluid Dynamics (CFD) has proven successful in getting a better understanding of the thrombosis phenomenon, but it still requires validation by means of accurate flow field
in vivo
atrial measurements. As an alternative, in this paper it is proposed an
in vitro
flow validation, consisting in an idealised model that captures the main flow features observed in the human LA which, once combined with Particle Image Velocimetry (PIV) measurements, provides readily accessible, easy to emulate, detailed velocity fields. These results have been used to validate our laminar and Large Eddy Simulation (LES) simulations. Besides, we have run a parametric study of different boundary conditions sets previously employed in the literature. These data can be used as a benchmark for further development of LA CFD models. |
doi_str_mv | 10.1007/s10439-020-02702-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475528073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529609429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-93fe2355ac3dada6b596aed43d88dd688c33f37093d9d589574489f2d3fd33ae3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwMVnJ_bAUCo-KhWxwGy5sYNSJXGJE6nl12NIAYmB4XTDPfee7iHkNIHLBCC78gkwlDFQCJUBjTd7ZJzwDGOZinSfjAEkxKlM2Ygceb8CSBKB_JCMEBkg42xMrm9c3xjdbuOZa0zZla6Jpo2utr70kSsi3URzY3VVvlsTLWzRRdOuLfs6enTGVsfkoNCVtye7PiEvd7fPs4d48XQ_n00XcY4Z72KJhaXIuc7RaKPTJZeptoahEcKYVIgcscAMJBppuJA8Y0zIghosDKK2OCEXQ-66dW-99Z2qS5_bqtKNdb1XlGWcUwEZBvT8D7pyfRs-ChSnMgXJqAwUHai8dd63tlDrtqyDBpWA-pSrBrkqyFVfctUmLJ3tovtlbc3PyrfNAOAA-DBqXm37e_uf2A8RC4OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529609429</pqid></control><display><type>article</type><title>Boundary-Condition Analysis of an Idealized Left Atrium Model</title><source>Springer journals</source><creator>Dueñas-Pamplona, Jorge ; Sierra-Pallares, José ; García, Javier ; Castro, Francisco ; Munoz-Paniagua, Jorge</creator><creatorcontrib>Dueñas-Pamplona, Jorge ; Sierra-Pallares, José ; García, Javier ; Castro, Francisco ; Munoz-Paniagua, Jorge</creatorcontrib><description>The most common type of cardiac arrhythmia is atrial fibrillation (AF), which is characterised by irregular and ineffective atrial contraction. This behaviour results into the formation of thrombi, mainly in the left atrial appendage (LAA), responsible for thromboembolic events. Very different approaches are considered as therapy for AF patients. Therefore, it is necessary to yield insight into the flow physics of thrombi formation to determine which is the most appropriate strategy in each case. Computational Fluid Dynamics (CFD) has proven successful in getting a better understanding of the thrombosis phenomenon, but it still requires validation by means of accurate flow field
in vivo
atrial measurements. As an alternative, in this paper it is proposed an
in vitro
flow validation, consisting in an idealised model that captures the main flow features observed in the human LA which, once combined with Particle Image Velocimetry (PIV) measurements, provides readily accessible, easy to emulate, detailed velocity fields. These results have been used to validate our laminar and Large Eddy Simulation (LES) simulations. Besides, we have run a parametric study of different boundary conditions sets previously employed in the literature. These data can be used as a benchmark for further development of LA CFD models.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-020-02702-x</identifier><identifier>PMID: 33403454</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Arrhythmia ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Boundary conditions ; Classical Mechanics ; Computational fluid dynamics ; Computer applications ; Contraction ; Fibrillation ; Fluid dynamics ; Hydrodynamics ; Large eddy simulation ; Mathematical models ; Original Article ; Particle image velocimetry ; Thromboembolism ; Thrombosis ; Velocity distribution</subject><ispartof>Annals of biomedical engineering, 2021-06, Vol.49 (6), p.1507-1520</ispartof><rights>Biomedical Engineering Society 2021</rights><rights>Biomedical Engineering Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-93fe2355ac3dada6b596aed43d88dd688c33f37093d9d589574489f2d3fd33ae3</citedby><cites>FETCH-LOGICAL-c375t-93fe2355ac3dada6b596aed43d88dd688c33f37093d9d589574489f2d3fd33ae3</cites><orcidid>0000-0002-7038-7517 ; 0000-0002-2986-7228 ; 0000-0002-4450-2438 ; 0000-0003-1565-9337 ; 0000-0002-6570-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-020-02702-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-020-02702-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33403454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dueñas-Pamplona, Jorge</creatorcontrib><creatorcontrib>Sierra-Pallares, José</creatorcontrib><creatorcontrib>García, Javier</creatorcontrib><creatorcontrib>Castro, Francisco</creatorcontrib><creatorcontrib>Munoz-Paniagua, Jorge</creatorcontrib><title>Boundary-Condition Analysis of an Idealized Left Atrium Model</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>The most common type of cardiac arrhythmia is atrial fibrillation (AF), which is characterised by irregular and ineffective atrial contraction. This behaviour results into the formation of thrombi, mainly in the left atrial appendage (LAA), responsible for thromboembolic events. Very different approaches are considered as therapy for AF patients. Therefore, it is necessary to yield insight into the flow physics of thrombi formation to determine which is the most appropriate strategy in each case. Computational Fluid Dynamics (CFD) has proven successful in getting a better understanding of the thrombosis phenomenon, but it still requires validation by means of accurate flow field
in vivo
atrial measurements. As an alternative, in this paper it is proposed an
in vitro
flow validation, consisting in an idealised model that captures the main flow features observed in the human LA which, once combined with Particle Image Velocimetry (PIV) measurements, provides readily accessible, easy to emulate, detailed velocity fields. These results have been used to validate our laminar and Large Eddy Simulation (LES) simulations. Besides, we have run a parametric study of different boundary conditions sets previously employed in the literature. These data can be used as a benchmark for further development of LA CFD models.</description><subject>Arrhythmia</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Contraction</subject><subject>Fibrillation</subject><subject>Fluid dynamics</subject><subject>Hydrodynamics</subject><subject>Large eddy simulation</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Particle image velocimetry</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><subject>Velocity distribution</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwMVnJ_bAUCo-KhWxwGy5sYNSJXGJE6nl12NIAYmB4XTDPfee7iHkNIHLBCC78gkwlDFQCJUBjTd7ZJzwDGOZinSfjAEkxKlM2Ygceb8CSBKB_JCMEBkg42xMrm9c3xjdbuOZa0zZla6Jpo2utr70kSsi3URzY3VVvlsTLWzRRdOuLfs6enTGVsfkoNCVtye7PiEvd7fPs4d48XQ_n00XcY4Z72KJhaXIuc7RaKPTJZeptoahEcKYVIgcscAMJBppuJA8Y0zIghosDKK2OCEXQ-66dW-99Z2qS5_bqtKNdb1XlGWcUwEZBvT8D7pyfRs-ChSnMgXJqAwUHai8dd63tlDrtqyDBpWA-pSrBrkqyFVfctUmLJ3tovtlbc3PyrfNAOAA-DBqXm37e_uf2A8RC4OA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Dueñas-Pamplona, Jorge</creator><creator>Sierra-Pallares, José</creator><creator>García, Javier</creator><creator>Castro, Francisco</creator><creator>Munoz-Paniagua, Jorge</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7038-7517</orcidid><orcidid>https://orcid.org/0000-0002-2986-7228</orcidid><orcidid>https://orcid.org/0000-0002-4450-2438</orcidid><orcidid>https://orcid.org/0000-0003-1565-9337</orcidid><orcidid>https://orcid.org/0000-0002-6570-6624</orcidid></search><sort><creationdate>20210601</creationdate><title>Boundary-Condition Analysis of an Idealized Left Atrium Model</title><author>Dueñas-Pamplona, Jorge ; Sierra-Pallares, José ; García, Javier ; Castro, Francisco ; Munoz-Paniagua, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-93fe2355ac3dada6b596aed43d88dd688c33f37093d9d589574489f2d3fd33ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrhythmia</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Contraction</topic><topic>Fibrillation</topic><topic>Fluid dynamics</topic><topic>Hydrodynamics</topic><topic>Large eddy simulation</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Particle image velocimetry</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dueñas-Pamplona, Jorge</creatorcontrib><creatorcontrib>Sierra-Pallares, José</creatorcontrib><creatorcontrib>García, Javier</creatorcontrib><creatorcontrib>Castro, Francisco</creatorcontrib><creatorcontrib>Munoz-Paniagua, Jorge</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dueñas-Pamplona, Jorge</au><au>Sierra-Pallares, José</au><au>García, Javier</au><au>Castro, Francisco</au><au>Munoz-Paniagua, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary-Condition Analysis of an Idealized Left Atrium Model</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>49</volume><issue>6</issue><spage>1507</spage><epage>1520</epage><pages>1507-1520</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>The most common type of cardiac arrhythmia is atrial fibrillation (AF), which is characterised by irregular and ineffective atrial contraction. This behaviour results into the formation of thrombi, mainly in the left atrial appendage (LAA), responsible for thromboembolic events. Very different approaches are considered as therapy for AF patients. Therefore, it is necessary to yield insight into the flow physics of thrombi formation to determine which is the most appropriate strategy in each case. Computational Fluid Dynamics (CFD) has proven successful in getting a better understanding of the thrombosis phenomenon, but it still requires validation by means of accurate flow field
in vivo
atrial measurements. As an alternative, in this paper it is proposed an
in vitro
flow validation, consisting in an idealised model that captures the main flow features observed in the human LA which, once combined with Particle Image Velocimetry (PIV) measurements, provides readily accessible, easy to emulate, detailed velocity fields. These results have been used to validate our laminar and Large Eddy Simulation (LES) simulations. Besides, we have run a parametric study of different boundary conditions sets previously employed in the literature. These data can be used as a benchmark for further development of LA CFD models.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33403454</pmid><doi>10.1007/s10439-020-02702-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7038-7517</orcidid><orcidid>https://orcid.org/0000-0002-2986-7228</orcidid><orcidid>https://orcid.org/0000-0002-4450-2438</orcidid><orcidid>https://orcid.org/0000-0003-1565-9337</orcidid><orcidid>https://orcid.org/0000-0002-6570-6624</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2021-06, Vol.49 (6), p.1507-1520 |
issn | 0090-6964 1573-9686 |
language | eng |
recordid | cdi_proquest_miscellaneous_2475528073 |
source | Springer journals |
subjects | Arrhythmia Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Boundary conditions Classical Mechanics Computational fluid dynamics Computer applications Contraction Fibrillation Fluid dynamics Hydrodynamics Large eddy simulation Mathematical models Original Article Particle image velocimetry Thromboembolism Thrombosis Velocity distribution |
title | Boundary-Condition Analysis of an Idealized Left Atrium Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary-Condition%20Analysis%20of%20an%20Idealized%20Left%20Atrium%20Model&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Due%C3%B1as-Pamplona,%20Jorge&rft.date=2021-06-01&rft.volume=49&rft.issue=6&rft.spage=1507&rft.epage=1520&rft.pages=1507-1520&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-020-02702-x&rft_dat=%3Cproquest_cross%3E2529609429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529609429&rft_id=info:pmid/33403454&rfr_iscdi=true |