Boundary-Condition Analysis of an Idealized Left Atrium Model

The most common type of cardiac arrhythmia is atrial fibrillation (AF), which is characterised by irregular and ineffective atrial contraction. This behaviour results into the formation of thrombi, mainly in the left atrial appendage (LAA), responsible for thromboembolic events. Very different appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2021-06, Vol.49 (6), p.1507-1520
Hauptverfasser: Dueñas-Pamplona, Jorge, Sierra-Pallares, José, García, Javier, Castro, Francisco, Munoz-Paniagua, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1520
container_issue 6
container_start_page 1507
container_title Annals of biomedical engineering
container_volume 49
creator Dueñas-Pamplona, Jorge
Sierra-Pallares, José
García, Javier
Castro, Francisco
Munoz-Paniagua, Jorge
description The most common type of cardiac arrhythmia is atrial fibrillation (AF), which is characterised by irregular and ineffective atrial contraction. This behaviour results into the formation of thrombi, mainly in the left atrial appendage (LAA), responsible for thromboembolic events. Very different approaches are considered as therapy for AF patients. Therefore, it is necessary to yield insight into the flow physics of thrombi formation to determine which is the most appropriate strategy in each case. Computational Fluid Dynamics (CFD) has proven successful in getting a better understanding of the thrombosis phenomenon, but it still requires validation by means of accurate flow field in vivo atrial measurements. As an alternative, in this paper it is proposed an in vitro flow validation, consisting in an idealised model that captures the main flow features observed in the human LA which, once combined with Particle Image Velocimetry (PIV) measurements, provides readily accessible, easy to emulate, detailed velocity fields. These results have been used to validate our laminar and Large Eddy Simulation (LES) simulations. Besides, we have run a parametric study of different boundary conditions sets previously employed in the literature. These data can be used as a benchmark for further development of LA CFD models.
doi_str_mv 10.1007/s10439-020-02702-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475528073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529609429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-93fe2355ac3dada6b596aed43d88dd688c33f37093d9d589574489f2d3fd33ae3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwMVnJ_bAUCo-KhWxwGy5sYNSJXGJE6nl12NIAYmB4XTDPfee7iHkNIHLBCC78gkwlDFQCJUBjTd7ZJzwDGOZinSfjAEkxKlM2Ygceb8CSBKB_JCMEBkg42xMrm9c3xjdbuOZa0zZla6Jpo2utr70kSsi3URzY3VVvlsTLWzRRdOuLfs6enTGVsfkoNCVtye7PiEvd7fPs4d48XQ_n00XcY4Z72KJhaXIuc7RaKPTJZeptoahEcKYVIgcscAMJBppuJA8Y0zIghosDKK2OCEXQ-66dW-99Z2qS5_bqtKNdb1XlGWcUwEZBvT8D7pyfRs-ChSnMgXJqAwUHai8dd63tlDrtqyDBpWA-pSrBrkqyFVfctUmLJ3tovtlbc3PyrfNAOAA-DBqXm37e_uf2A8RC4OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529609429</pqid></control><display><type>article</type><title>Boundary-Condition Analysis of an Idealized Left Atrium Model</title><source>Springer journals</source><creator>Dueñas-Pamplona, Jorge ; Sierra-Pallares, José ; García, Javier ; Castro, Francisco ; Munoz-Paniagua, Jorge</creator><creatorcontrib>Dueñas-Pamplona, Jorge ; Sierra-Pallares, José ; García, Javier ; Castro, Francisco ; Munoz-Paniagua, Jorge</creatorcontrib><description>The most common type of cardiac arrhythmia is atrial fibrillation (AF), which is characterised by irregular and ineffective atrial contraction. This behaviour results into the formation of thrombi, mainly in the left atrial appendage (LAA), responsible for thromboembolic events. Very different approaches are considered as therapy for AF patients. Therefore, it is necessary to yield insight into the flow physics of thrombi formation to determine which is the most appropriate strategy in each case. Computational Fluid Dynamics (CFD) has proven successful in getting a better understanding of the thrombosis phenomenon, but it still requires validation by means of accurate flow field in vivo atrial measurements. As an alternative, in this paper it is proposed an in vitro flow validation, consisting in an idealised model that captures the main flow features observed in the human LA which, once combined with Particle Image Velocimetry (PIV) measurements, provides readily accessible, easy to emulate, detailed velocity fields. These results have been used to validate our laminar and Large Eddy Simulation (LES) simulations. Besides, we have run a parametric study of different boundary conditions sets previously employed in the literature. These data can be used as a benchmark for further development of LA CFD models.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-020-02702-x</identifier><identifier>PMID: 33403454</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Arrhythmia ; Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Boundary conditions ; Classical Mechanics ; Computational fluid dynamics ; Computer applications ; Contraction ; Fibrillation ; Fluid dynamics ; Hydrodynamics ; Large eddy simulation ; Mathematical models ; Original Article ; Particle image velocimetry ; Thromboembolism ; Thrombosis ; Velocity distribution</subject><ispartof>Annals of biomedical engineering, 2021-06, Vol.49 (6), p.1507-1520</ispartof><rights>Biomedical Engineering Society 2021</rights><rights>Biomedical Engineering Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-93fe2355ac3dada6b596aed43d88dd688c33f37093d9d589574489f2d3fd33ae3</citedby><cites>FETCH-LOGICAL-c375t-93fe2355ac3dada6b596aed43d88dd688c33f37093d9d589574489f2d3fd33ae3</cites><orcidid>0000-0002-7038-7517 ; 0000-0002-2986-7228 ; 0000-0002-4450-2438 ; 0000-0003-1565-9337 ; 0000-0002-6570-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-020-02702-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-020-02702-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33403454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dueñas-Pamplona, Jorge</creatorcontrib><creatorcontrib>Sierra-Pallares, José</creatorcontrib><creatorcontrib>García, Javier</creatorcontrib><creatorcontrib>Castro, Francisco</creatorcontrib><creatorcontrib>Munoz-Paniagua, Jorge</creatorcontrib><title>Boundary-Condition Analysis of an Idealized Left Atrium Model</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>The most common type of cardiac arrhythmia is atrial fibrillation (AF), which is characterised by irregular and ineffective atrial contraction. This behaviour results into the formation of thrombi, mainly in the left atrial appendage (LAA), responsible for thromboembolic events. Very different approaches are considered as therapy for AF patients. Therefore, it is necessary to yield insight into the flow physics of thrombi formation to determine which is the most appropriate strategy in each case. Computational Fluid Dynamics (CFD) has proven successful in getting a better understanding of the thrombosis phenomenon, but it still requires validation by means of accurate flow field in vivo atrial measurements. As an alternative, in this paper it is proposed an in vitro flow validation, consisting in an idealised model that captures the main flow features observed in the human LA which, once combined with Particle Image Velocimetry (PIV) measurements, provides readily accessible, easy to emulate, detailed velocity fields. These results have been used to validate our laminar and Large Eddy Simulation (LES) simulations. Besides, we have run a parametric study of different boundary conditions sets previously employed in the literature. These data can be used as a benchmark for further development of LA CFD models.</description><subject>Arrhythmia</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Boundary conditions</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Contraction</subject><subject>Fibrillation</subject><subject>Fluid dynamics</subject><subject>Hydrodynamics</subject><subject>Large eddy simulation</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Particle image velocimetry</subject><subject>Thromboembolism</subject><subject>Thrombosis</subject><subject>Velocity distribution</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwMVnJ_bAUCo-KhWxwGy5sYNSJXGJE6nl12NIAYmB4XTDPfee7iHkNIHLBCC78gkwlDFQCJUBjTd7ZJzwDGOZinSfjAEkxKlM2Ygceb8CSBKB_JCMEBkg42xMrm9c3xjdbuOZa0zZla6Jpo2utr70kSsi3URzY3VVvlsTLWzRRdOuLfs6enTGVsfkoNCVtye7PiEvd7fPs4d48XQ_n00XcY4Z72KJhaXIuc7RaKPTJZeptoahEcKYVIgcscAMJBppuJA8Y0zIghosDKK2OCEXQ-66dW-99Z2qS5_bqtKNdb1XlGWcUwEZBvT8D7pyfRs-ChSnMgXJqAwUHai8dd63tlDrtqyDBpWA-pSrBrkqyFVfctUmLJ3tovtlbc3PyrfNAOAA-DBqXm37e_uf2A8RC4OA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Dueñas-Pamplona, Jorge</creator><creator>Sierra-Pallares, José</creator><creator>García, Javier</creator><creator>Castro, Francisco</creator><creator>Munoz-Paniagua, Jorge</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7038-7517</orcidid><orcidid>https://orcid.org/0000-0002-2986-7228</orcidid><orcidid>https://orcid.org/0000-0002-4450-2438</orcidid><orcidid>https://orcid.org/0000-0003-1565-9337</orcidid><orcidid>https://orcid.org/0000-0002-6570-6624</orcidid></search><sort><creationdate>20210601</creationdate><title>Boundary-Condition Analysis of an Idealized Left Atrium Model</title><author>Dueñas-Pamplona, Jorge ; Sierra-Pallares, José ; García, Javier ; Castro, Francisco ; Munoz-Paniagua, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-93fe2355ac3dada6b596aed43d88dd688c33f37093d9d589574489f2d3fd33ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrhythmia</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Boundary conditions</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Contraction</topic><topic>Fibrillation</topic><topic>Fluid dynamics</topic><topic>Hydrodynamics</topic><topic>Large eddy simulation</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Particle image velocimetry</topic><topic>Thromboembolism</topic><topic>Thrombosis</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dueñas-Pamplona, Jorge</creatorcontrib><creatorcontrib>Sierra-Pallares, José</creatorcontrib><creatorcontrib>García, Javier</creatorcontrib><creatorcontrib>Castro, Francisco</creatorcontrib><creatorcontrib>Munoz-Paniagua, Jorge</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dueñas-Pamplona, Jorge</au><au>Sierra-Pallares, José</au><au>García, Javier</au><au>Castro, Francisco</au><au>Munoz-Paniagua, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary-Condition Analysis of an Idealized Left Atrium Model</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>49</volume><issue>6</issue><spage>1507</spage><epage>1520</epage><pages>1507-1520</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>The most common type of cardiac arrhythmia is atrial fibrillation (AF), which is characterised by irregular and ineffective atrial contraction. This behaviour results into the formation of thrombi, mainly in the left atrial appendage (LAA), responsible for thromboembolic events. Very different approaches are considered as therapy for AF patients. Therefore, it is necessary to yield insight into the flow physics of thrombi formation to determine which is the most appropriate strategy in each case. Computational Fluid Dynamics (CFD) has proven successful in getting a better understanding of the thrombosis phenomenon, but it still requires validation by means of accurate flow field in vivo atrial measurements. As an alternative, in this paper it is proposed an in vitro flow validation, consisting in an idealised model that captures the main flow features observed in the human LA which, once combined with Particle Image Velocimetry (PIV) measurements, provides readily accessible, easy to emulate, detailed velocity fields. These results have been used to validate our laminar and Large Eddy Simulation (LES) simulations. Besides, we have run a parametric study of different boundary conditions sets previously employed in the literature. These data can be used as a benchmark for further development of LA CFD models.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33403454</pmid><doi>10.1007/s10439-020-02702-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7038-7517</orcidid><orcidid>https://orcid.org/0000-0002-2986-7228</orcidid><orcidid>https://orcid.org/0000-0002-4450-2438</orcidid><orcidid>https://orcid.org/0000-0003-1565-9337</orcidid><orcidid>https://orcid.org/0000-0002-6570-6624</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2021-06, Vol.49 (6), p.1507-1520
issn 0090-6964
1573-9686
language eng
recordid cdi_proquest_miscellaneous_2475528073
source Springer journals
subjects Arrhythmia
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Boundary conditions
Classical Mechanics
Computational fluid dynamics
Computer applications
Contraction
Fibrillation
Fluid dynamics
Hydrodynamics
Large eddy simulation
Mathematical models
Original Article
Particle image velocimetry
Thromboembolism
Thrombosis
Velocity distribution
title Boundary-Condition Analysis of an Idealized Left Atrium Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary-Condition%20Analysis%20of%20an%20Idealized%20Left%20Atrium%20Model&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Due%C3%B1as-Pamplona,%20Jorge&rft.date=2021-06-01&rft.volume=49&rft.issue=6&rft.spage=1507&rft.epage=1520&rft.pages=1507-1520&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-020-02702-x&rft_dat=%3Cproquest_cross%3E2529609429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529609429&rft_id=info:pmid/33403454&rfr_iscdi=true