Multifrequency Hebbian plasticity in coupled neural oscillators
We study multifrequency Hebbian plasticity by analyzing phenomenological models of weakly connected neural networks. We start with an analysis of a model for single-frequency networks previously shown to learn and memorize phase differences between component oscillators. We then study a model for gr...
Gespeichert in:
Veröffentlicht in: | Biological cybernetics 2021-02, Vol.115 (1), p.43-57 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Biological cybernetics |
container_volume | 115 |
creator | Kim, Ji Chul Large, Edward W. |
description | We study multifrequency Hebbian plasticity by analyzing phenomenological models of weakly connected neural networks. We start with an analysis of a model for single-frequency networks previously shown to learn and memorize phase differences between component oscillators. We then study a model for gradient frequency neural networks (GrFNNs) which extends the single-frequency model by introducing frequency detuning and nonlinear coupling terms for multifrequency interactions. Our analysis focuses on models of two coupled oscillators and examines the dynamics of steady-state behaviors in multiple parameter regimes available to the models. We find that the model for two distinct frequencies shares essential dynamical properties with the single-frequency model and that Hebbian learning results in stronger connections for simple frequency ratios than for complex ratios. We then compare the analysis of the two-frequency model with numerical simulations of the GrFNN model and show that Hebbian plasticity in the latter is locally dominated by a nonlinear resonance captured by the two-frequency model. |
doi_str_mv | 10.1007/s00422-020-00854-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475398481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495185811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-79138bc46d31427c55ca10331b7615642ad1475a55dd39ee3ea19b189e83af583</originalsourceid><addsrcrecordid>eNp9kE9LwzAchoMobk6_gAcpePFS_eVfk5xEhjph4kXPIU1TyejambSHfXszOxU8eAokz_vm5UHoHMM1BhA3EYARkgOBHEBylhcHaIoZTVdCwCGaAmWQYwIwQScxrgBAEa6O0YRSqpRiYopun4em93VwH4Nr7TZbuLL0ps02jYm9t77fZr7NbDdsGldlrRuCabIuWt80pu9CPEVHtWmiO9ufM_T2cP86X-TLl8en-d0yt1TwPhcKU1laVlQUMyIs59ZgoBSXosC8YMRUmAluOK8qqpyjzmBVYqmcpKbmks7Q1di7CV2aGnu99tG6tKJ13RA1SWmqJJM4oZd_0FU3hDatS5TiWHKJdxQZKRu6GIOr9Sb4tQlbjUHv9OpRr0569ZdeXaTQxb56KNeu-ol8-0wAHYGYntp3F37__qf2E2yqg88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495185811</pqid></control><display><type>article</type><title>Multifrequency Hebbian plasticity in coupled neural oscillators</title><source>SpringerNature Journals</source><creator>Kim, Ji Chul ; Large, Edward W.</creator><creatorcontrib>Kim, Ji Chul ; Large, Edward W.</creatorcontrib><description>We study multifrequency Hebbian plasticity by analyzing phenomenological models of weakly connected neural networks. We start with an analysis of a model for single-frequency networks previously shown to learn and memorize phase differences between component oscillators. We then study a model for gradient frequency neural networks (GrFNNs) which extends the single-frequency model by introducing frequency detuning and nonlinear coupling terms for multifrequency interactions. Our analysis focuses on models of two coupled oscillators and examines the dynamics of steady-state behaviors in multiple parameter regimes available to the models. We find that the model for two distinct frequencies shares essential dynamical properties with the single-frequency model and that Hebbian learning results in stronger connections for simple frequency ratios than for complex ratios. We then compare the analysis of the two-frequency model with numerical simulations of the GrFNN model and show that Hebbian plasticity in the latter is locally dominated by a nonlinear resonance captured by the two-frequency model.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-020-00854-6</identifier><identifier>PMID: 33399947</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Complex Systems ; Computer Appl. in Life Sciences ; Hebbian plasticity ; Mathematical models ; Neural networks ; Neurobiology ; Neuroplasticity ; Neurosciences ; Original Article ; Oscillators ; Plastic properties ; Plasticity</subject><ispartof>Biological cybernetics, 2021-02, Vol.115 (1), p.43-57</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-79138bc46d31427c55ca10331b7615642ad1475a55dd39ee3ea19b189e83af583</citedby><cites>FETCH-LOGICAL-c375t-79138bc46d31427c55ca10331b7615642ad1475a55dd39ee3ea19b189e83af583</cites><orcidid>0000-0002-8909-3340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00422-020-00854-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00422-020-00854-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33399947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ji Chul</creatorcontrib><creatorcontrib>Large, Edward W.</creatorcontrib><title>Multifrequency Hebbian plasticity in coupled neural oscillators</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><addtitle>Biol Cybern</addtitle><description>We study multifrequency Hebbian plasticity by analyzing phenomenological models of weakly connected neural networks. We start with an analysis of a model for single-frequency networks previously shown to learn and memorize phase differences between component oscillators. We then study a model for gradient frequency neural networks (GrFNNs) which extends the single-frequency model by introducing frequency detuning and nonlinear coupling terms for multifrequency interactions. Our analysis focuses on models of two coupled oscillators and examines the dynamics of steady-state behaviors in multiple parameter regimes available to the models. We find that the model for two distinct frequencies shares essential dynamical properties with the single-frequency model and that Hebbian learning results in stronger connections for simple frequency ratios than for complex ratios. We then compare the analysis of the two-frequency model with numerical simulations of the GrFNN model and show that Hebbian plasticity in the latter is locally dominated by a nonlinear resonance captured by the two-frequency model.</description><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Complex Systems</subject><subject>Computer Appl. in Life Sciences</subject><subject>Hebbian plasticity</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neuroplasticity</subject><subject>Neurosciences</subject><subject>Original Article</subject><subject>Oscillators</subject><subject>Plastic properties</subject><subject>Plasticity</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LwzAchoMobk6_gAcpePFS_eVfk5xEhjph4kXPIU1TyejambSHfXszOxU8eAokz_vm5UHoHMM1BhA3EYARkgOBHEBylhcHaIoZTVdCwCGaAmWQYwIwQScxrgBAEa6O0YRSqpRiYopun4em93VwH4Nr7TZbuLL0ps02jYm9t77fZr7NbDdsGldlrRuCabIuWt80pu9CPEVHtWmiO9ufM_T2cP86X-TLl8en-d0yt1TwPhcKU1laVlQUMyIs59ZgoBSXosC8YMRUmAluOK8qqpyjzmBVYqmcpKbmks7Q1di7CV2aGnu99tG6tKJ13RA1SWmqJJM4oZd_0FU3hDatS5TiWHKJdxQZKRu6GIOr9Sb4tQlbjUHv9OpRr0569ZdeXaTQxb56KNeu-ol8-0wAHYGYntp3F37__qf2E2yqg88</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Kim, Ji Chul</creator><creator>Large, Edward W.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8909-3340</orcidid></search><sort><creationdate>20210201</creationdate><title>Multifrequency Hebbian plasticity in coupled neural oscillators</title><author>Kim, Ji Chul ; Large, Edward W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-79138bc46d31427c55ca10331b7615642ad1475a55dd39ee3ea19b189e83af583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Complex Systems</topic><topic>Computer Appl. in Life Sciences</topic><topic>Hebbian plasticity</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neuroplasticity</topic><topic>Neurosciences</topic><topic>Original Article</topic><topic>Oscillators</topic><topic>Plastic properties</topic><topic>Plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ji Chul</creatorcontrib><creatorcontrib>Large, Edward W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ji Chul</au><au>Large, Edward W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifrequency Hebbian plasticity in coupled neural oscillators</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><addtitle>Biol Cybern</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>115</volume><issue>1</issue><spage>43</spage><epage>57</epage><pages>43-57</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>We study multifrequency Hebbian plasticity by analyzing phenomenological models of weakly connected neural networks. We start with an analysis of a model for single-frequency networks previously shown to learn and memorize phase differences between component oscillators. We then study a model for gradient frequency neural networks (GrFNNs) which extends the single-frequency model by introducing frequency detuning and nonlinear coupling terms for multifrequency interactions. Our analysis focuses on models of two coupled oscillators and examines the dynamics of steady-state behaviors in multiple parameter regimes available to the models. We find that the model for two distinct frequencies shares essential dynamical properties with the single-frequency model and that Hebbian learning results in stronger connections for simple frequency ratios than for complex ratios. We then compare the analysis of the two-frequency model with numerical simulations of the GrFNN model and show that Hebbian plasticity in the latter is locally dominated by a nonlinear resonance captured by the two-frequency model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33399947</pmid><doi>10.1007/s00422-020-00854-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8909-3340</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-1200 |
ispartof | Biological cybernetics, 2021-02, Vol.115 (1), p.43-57 |
issn | 0340-1200 1432-0770 |
language | eng |
recordid | cdi_proquest_miscellaneous_2475398481 |
source | SpringerNature Journals |
subjects | Bioinformatics Biomedical and Life Sciences Biomedicine Complex Systems Computer Appl. in Life Sciences Hebbian plasticity Mathematical models Neural networks Neurobiology Neuroplasticity Neurosciences Original Article Oscillators Plastic properties Plasticity |
title | Multifrequency Hebbian plasticity in coupled neural oscillators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifrequency%20Hebbian%20plasticity%20in%20coupled%20neural%20oscillators&rft.jtitle=Biological%20cybernetics&rft.au=Kim,%20Ji%20Chul&rft.date=2021-02-01&rft.volume=115&rft.issue=1&rft.spage=43&rft.epage=57&rft.pages=43-57&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-020-00854-6&rft_dat=%3Cproquest_cross%3E2495185811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495185811&rft_id=info:pmid/33399947&rfr_iscdi=true |