Multifrequency Hebbian plasticity in coupled neural oscillators

We study multifrequency Hebbian plasticity by analyzing phenomenological models of weakly connected neural networks. We start with an analysis of a model for single-frequency networks previously shown to learn and memorize phase differences between component oscillators. We then study a model for gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological cybernetics 2021-02, Vol.115 (1), p.43-57
Hauptverfasser: Kim, Ji Chul, Large, Edward W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 1
container_start_page 43
container_title Biological cybernetics
container_volume 115
creator Kim, Ji Chul
Large, Edward W.
description We study multifrequency Hebbian plasticity by analyzing phenomenological models of weakly connected neural networks. We start with an analysis of a model for single-frequency networks previously shown to learn and memorize phase differences between component oscillators. We then study a model for gradient frequency neural networks (GrFNNs) which extends the single-frequency model by introducing frequency detuning and nonlinear coupling terms for multifrequency interactions. Our analysis focuses on models of two coupled oscillators and examines the dynamics of steady-state behaviors in multiple parameter regimes available to the models. We find that the model for two distinct frequencies shares essential dynamical properties with the single-frequency model and that Hebbian learning results in stronger connections for simple frequency ratios than for complex ratios. We then compare the analysis of the two-frequency model with numerical simulations of the GrFNN model and show that Hebbian plasticity in the latter is locally dominated by a nonlinear resonance captured by the two-frequency model.
doi_str_mv 10.1007/s00422-020-00854-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475398481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495185811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-79138bc46d31427c55ca10331b7615642ad1475a55dd39ee3ea19b189e83af583</originalsourceid><addsrcrecordid>eNp9kE9LwzAchoMobk6_gAcpePFS_eVfk5xEhjph4kXPIU1TyejambSHfXszOxU8eAokz_vm5UHoHMM1BhA3EYARkgOBHEBylhcHaIoZTVdCwCGaAmWQYwIwQScxrgBAEa6O0YRSqpRiYopun4em93VwH4Nr7TZbuLL0ps02jYm9t77fZr7NbDdsGldlrRuCabIuWt80pu9CPEVHtWmiO9ufM_T2cP86X-TLl8en-d0yt1TwPhcKU1laVlQUMyIs59ZgoBSXosC8YMRUmAluOK8qqpyjzmBVYqmcpKbmks7Q1di7CV2aGnu99tG6tKJ13RA1SWmqJJM4oZd_0FU3hDatS5TiWHKJdxQZKRu6GIOr9Sb4tQlbjUHv9OpRr0569ZdeXaTQxb56KNeu-ol8-0wAHYGYntp3F37__qf2E2yqg88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495185811</pqid></control><display><type>article</type><title>Multifrequency Hebbian plasticity in coupled neural oscillators</title><source>SpringerNature Journals</source><creator>Kim, Ji Chul ; Large, Edward W.</creator><creatorcontrib>Kim, Ji Chul ; Large, Edward W.</creatorcontrib><description>We study multifrequency Hebbian plasticity by analyzing phenomenological models of weakly connected neural networks. We start with an analysis of a model for single-frequency networks previously shown to learn and memorize phase differences between component oscillators. We then study a model for gradient frequency neural networks (GrFNNs) which extends the single-frequency model by introducing frequency detuning and nonlinear coupling terms for multifrequency interactions. Our analysis focuses on models of two coupled oscillators and examines the dynamics of steady-state behaviors in multiple parameter regimes available to the models. We find that the model for two distinct frequencies shares essential dynamical properties with the single-frequency model and that Hebbian learning results in stronger connections for simple frequency ratios than for complex ratios. We then compare the analysis of the two-frequency model with numerical simulations of the GrFNN model and show that Hebbian plasticity in the latter is locally dominated by a nonlinear resonance captured by the two-frequency model.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-020-00854-6</identifier><identifier>PMID: 33399947</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Complex Systems ; Computer Appl. in Life Sciences ; Hebbian plasticity ; Mathematical models ; Neural networks ; Neurobiology ; Neuroplasticity ; Neurosciences ; Original Article ; Oscillators ; Plastic properties ; Plasticity</subject><ispartof>Biological cybernetics, 2021-02, Vol.115 (1), p.43-57</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-79138bc46d31427c55ca10331b7615642ad1475a55dd39ee3ea19b189e83af583</citedby><cites>FETCH-LOGICAL-c375t-79138bc46d31427c55ca10331b7615642ad1475a55dd39ee3ea19b189e83af583</cites><orcidid>0000-0002-8909-3340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00422-020-00854-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00422-020-00854-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33399947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Ji Chul</creatorcontrib><creatorcontrib>Large, Edward W.</creatorcontrib><title>Multifrequency Hebbian plasticity in coupled neural oscillators</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><addtitle>Biol Cybern</addtitle><description>We study multifrequency Hebbian plasticity by analyzing phenomenological models of weakly connected neural networks. We start with an analysis of a model for single-frequency networks previously shown to learn and memorize phase differences between component oscillators. We then study a model for gradient frequency neural networks (GrFNNs) which extends the single-frequency model by introducing frequency detuning and nonlinear coupling terms for multifrequency interactions. Our analysis focuses on models of two coupled oscillators and examines the dynamics of steady-state behaviors in multiple parameter regimes available to the models. We find that the model for two distinct frequencies shares essential dynamical properties with the single-frequency model and that Hebbian learning results in stronger connections for simple frequency ratios than for complex ratios. We then compare the analysis of the two-frequency model with numerical simulations of the GrFNN model and show that Hebbian plasticity in the latter is locally dominated by a nonlinear resonance captured by the two-frequency model.</description><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Complex Systems</subject><subject>Computer Appl. in Life Sciences</subject><subject>Hebbian plasticity</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neuroplasticity</subject><subject>Neurosciences</subject><subject>Original Article</subject><subject>Oscillators</subject><subject>Plastic properties</subject><subject>Plasticity</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LwzAchoMobk6_gAcpePFS_eVfk5xEhjph4kXPIU1TyejambSHfXszOxU8eAokz_vm5UHoHMM1BhA3EYARkgOBHEBylhcHaIoZTVdCwCGaAmWQYwIwQScxrgBAEa6O0YRSqpRiYopun4em93VwH4Nr7TZbuLL0ps02jYm9t77fZr7NbDdsGldlrRuCabIuWt80pu9CPEVHtWmiO9ufM_T2cP86X-TLl8en-d0yt1TwPhcKU1laVlQUMyIs59ZgoBSXosC8YMRUmAluOK8qqpyjzmBVYqmcpKbmks7Q1di7CV2aGnu99tG6tKJ13RA1SWmqJJM4oZd_0FU3hDatS5TiWHKJdxQZKRu6GIOr9Sb4tQlbjUHv9OpRr0569ZdeXaTQxb56KNeu-ol8-0wAHYGYntp3F37__qf2E2yqg88</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Kim, Ji Chul</creator><creator>Large, Edward W.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8909-3340</orcidid></search><sort><creationdate>20210201</creationdate><title>Multifrequency Hebbian plasticity in coupled neural oscillators</title><author>Kim, Ji Chul ; Large, Edward W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-79138bc46d31427c55ca10331b7615642ad1475a55dd39ee3ea19b189e83af583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Complex Systems</topic><topic>Computer Appl. in Life Sciences</topic><topic>Hebbian plasticity</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neuroplasticity</topic><topic>Neurosciences</topic><topic>Original Article</topic><topic>Oscillators</topic><topic>Plastic properties</topic><topic>Plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Ji Chul</creatorcontrib><creatorcontrib>Large, Edward W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Ji Chul</au><au>Large, Edward W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifrequency Hebbian plasticity in coupled neural oscillators</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><addtitle>Biol Cybern</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>115</volume><issue>1</issue><spage>43</spage><epage>57</epage><pages>43-57</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>We study multifrequency Hebbian plasticity by analyzing phenomenological models of weakly connected neural networks. We start with an analysis of a model for single-frequency networks previously shown to learn and memorize phase differences between component oscillators. We then study a model for gradient frequency neural networks (GrFNNs) which extends the single-frequency model by introducing frequency detuning and nonlinear coupling terms for multifrequency interactions. Our analysis focuses on models of two coupled oscillators and examines the dynamics of steady-state behaviors in multiple parameter regimes available to the models. We find that the model for two distinct frequencies shares essential dynamical properties with the single-frequency model and that Hebbian learning results in stronger connections for simple frequency ratios than for complex ratios. We then compare the analysis of the two-frequency model with numerical simulations of the GrFNN model and show that Hebbian plasticity in the latter is locally dominated by a nonlinear resonance captured by the two-frequency model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33399947</pmid><doi>10.1007/s00422-020-00854-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8909-3340</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0340-1200
ispartof Biological cybernetics, 2021-02, Vol.115 (1), p.43-57
issn 0340-1200
1432-0770
language eng
recordid cdi_proquest_miscellaneous_2475398481
source SpringerNature Journals
subjects Bioinformatics
Biomedical and Life Sciences
Biomedicine
Complex Systems
Computer Appl. in Life Sciences
Hebbian plasticity
Mathematical models
Neural networks
Neurobiology
Neuroplasticity
Neurosciences
Original Article
Oscillators
Plastic properties
Plasticity
title Multifrequency Hebbian plasticity in coupled neural oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifrequency%20Hebbian%20plasticity%20in%20coupled%20neural%20oscillators&rft.jtitle=Biological%20cybernetics&rft.au=Kim,%20Ji%20Chul&rft.date=2021-02-01&rft.volume=115&rft.issue=1&rft.spage=43&rft.epage=57&rft.pages=43-57&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-020-00854-6&rft_dat=%3Cproquest_cross%3E2495185811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495185811&rft_id=info:pmid/33399947&rfr_iscdi=true