n-type charge transport in heavily p-doped polymers

It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2021-04, Vol.20 (4), p.518-524
Hauptverfasser: Liang, Zhiming, Choi, Hyun Ho, Luo, Xuyi, Liu, Tuo, Abtahi, Ashkan, Ramasamy, Uma Shantini, Hitron, J. Andrew, Baustert, Kyle N., Hempel, Jacob L., Boehm, Alex M., Ansary, Armin, Strachan, Douglas R., Mei, Jianguo, Risko, Chad, Podzorov, Vitaly, Graham, Kenneth R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 524
container_issue 4
container_start_page 518
container_title Nature materials
container_volume 20
creator Liang, Zhiming
Choi, Hyun Ho
Luo, Xuyi
Liu, Tuo
Abtahi, Ashkan
Ramasamy, Uma Shantini
Hitron, J. Andrew
Baustert, Kyle N.
Hempel, Jacob L.
Boehm, Alex M.
Ansary, Armin
Strachan, Douglas R.
Mei, Jianguo
Risko, Chad
Podzorov, Vitaly
Graham, Kenneth R.
description It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl 3 or NOBF 4 increase, and Hall effect measurements for the same p - doped polymers reveal that electrons become the dominant delocalized charge carriers. Ultraviolet and inverse photoelectron spectroscopy measurements show that doping with oxidizing agents results in elimination of the transport gap at high doping concentrations. This approach of heavy p-type doping is demonstrated to provide a promising route to high-performance n-type organic thermoelectric materials. A broad range of characterization techniques is used to understand the dominant electron conduction in various p-type doped π-conjugated polymers, which show p-type and n-type thermoelectric power factors depending on the dopant concentration.
doi_str_mv 10.1038/s41563-020-00859-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475397673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475397673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-469b44050ab9d054049ab8e544ba6c811b47f6be2c24b62c786f9c23d9f5e8073</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAdZ8OIlmu9sjlL8AsGLnkOSzbZb9stkK-y_N3WrggdPMzDPvDM8AJxjdI0RzW8iw1xQiAiCCOVcQXoA5phJAZkQ6HDfY0zIDJzEuEGIYM7FMZhRSlWOsZwD2sJh7H3m1iasfDYE08a-C0NWtdnam4-qHrMeFl3vi6zv6rHxIZ6Co9LU0Z_t6wK83d-9Lh_h88vD0_L2GTqW8yE9oSxjiCNjVYE4Q0wZm3vOmDXCpfOWyVJYTxxhVhAnc1EqR2ihSu5zJOkCXE25fejetz4Ouqmi83VtWt9toyZMcqqkkDShl3_QTbcNbfpOE444l0RIlSgyUS50MQZf6j5UjQmjxkjvlOpJqU5K9ZdSvYu-2EdvbeOLn5VvhwmgExDTqF358Hv7n9hPtFd_Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505572679</pqid></control><display><type>article</type><title>n-type charge transport in heavily p-doped polymers</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Liang, Zhiming ; Choi, Hyun Ho ; Luo, Xuyi ; Liu, Tuo ; Abtahi, Ashkan ; Ramasamy, Uma Shantini ; Hitron, J. Andrew ; Baustert, Kyle N. ; Hempel, Jacob L. ; Boehm, Alex M. ; Ansary, Armin ; Strachan, Douglas R. ; Mei, Jianguo ; Risko, Chad ; Podzorov, Vitaly ; Graham, Kenneth R.</creator><creatorcontrib>Liang, Zhiming ; Choi, Hyun Ho ; Luo, Xuyi ; Liu, Tuo ; Abtahi, Ashkan ; Ramasamy, Uma Shantini ; Hitron, J. Andrew ; Baustert, Kyle N. ; Hempel, Jacob L. ; Boehm, Alex M. ; Ansary, Armin ; Strachan, Douglas R. ; Mei, Jianguo ; Risko, Chad ; Podzorov, Vitaly ; Graham, Kenneth R.</creatorcontrib><description>It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl 3 or NOBF 4 increase, and Hall effect measurements for the same p - doped polymers reveal that electrons become the dominant delocalized charge carriers. Ultraviolet and inverse photoelectron spectroscopy measurements show that doping with oxidizing agents results in elimination of the transport gap at high doping concentrations. This approach of heavy p-type doping is demonstrated to provide a promising route to high-performance n-type organic thermoelectric materials. A broad range of characterization techniques is used to understand the dominant electron conduction in various p-type doped π-conjugated polymers, which show p-type and n-type thermoelectric power factors depending on the dopant concentration.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-020-00859-3</identifier><identifier>PMID: 33398117</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/638 ; 639/638/298 ; 639/638/440 ; 639/638/455 ; Biomaterials ; Carrier transport ; Charge transport ; Chemistry and Materials Science ; Condensed Matter Physics ; Current carriers ; Dopants ; Doping ; Electromagnetism ; Electrons ; Ferric chloride ; Hall effect ; Iron chlorides ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Oxidation ; Oxidizing agents ; Photoelectrons ; Polymers ; Seebeck effect ; Thermoelectric materials</subject><ispartof>Nature materials, 2021-04, Vol.20 (4), p.518-524</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-469b44050ab9d054049ab8e544ba6c811b47f6be2c24b62c786f9c23d9f5e8073</citedby><cites>FETCH-LOGICAL-c485t-469b44050ab9d054049ab8e544ba6c811b47f6be2c24b62c786f9c23d9f5e8073</cites><orcidid>0000-0002-9599-1745 ; 0000-0002-6387-3998 ; 0000-0001-6185-0605 ; 0000-0002-5743-2715 ; 0000-0001-9838-5233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-020-00859-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-020-00859-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33398117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Zhiming</creatorcontrib><creatorcontrib>Choi, Hyun Ho</creatorcontrib><creatorcontrib>Luo, Xuyi</creatorcontrib><creatorcontrib>Liu, Tuo</creatorcontrib><creatorcontrib>Abtahi, Ashkan</creatorcontrib><creatorcontrib>Ramasamy, Uma Shantini</creatorcontrib><creatorcontrib>Hitron, J. Andrew</creatorcontrib><creatorcontrib>Baustert, Kyle N.</creatorcontrib><creatorcontrib>Hempel, Jacob L.</creatorcontrib><creatorcontrib>Boehm, Alex M.</creatorcontrib><creatorcontrib>Ansary, Armin</creatorcontrib><creatorcontrib>Strachan, Douglas R.</creatorcontrib><creatorcontrib>Mei, Jianguo</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Podzorov, Vitaly</creatorcontrib><creatorcontrib>Graham, Kenneth R.</creatorcontrib><title>n-type charge transport in heavily p-doped polymers</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl 3 or NOBF 4 increase, and Hall effect measurements for the same p - doped polymers reveal that electrons become the dominant delocalized charge carriers. Ultraviolet and inverse photoelectron spectroscopy measurements show that doping with oxidizing agents results in elimination of the transport gap at high doping concentrations. This approach of heavy p-type doping is demonstrated to provide a promising route to high-performance n-type organic thermoelectric materials. A broad range of characterization techniques is used to understand the dominant electron conduction in various p-type doped π-conjugated polymers, which show p-type and n-type thermoelectric power factors depending on the dopant concentration.</description><subject>639/301</subject><subject>639/638</subject><subject>639/638/298</subject><subject>639/638/440</subject><subject>639/638/455</subject><subject>Biomaterials</subject><subject>Carrier transport</subject><subject>Charge transport</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Current carriers</subject><subject>Dopants</subject><subject>Doping</subject><subject>Electromagnetism</subject><subject>Electrons</subject><subject>Ferric chloride</subject><subject>Hall effect</subject><subject>Iron chlorides</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Photoelectrons</subject><subject>Polymers</subject><subject>Seebeck effect</subject><subject>Thermoelectric materials</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gAdZ8OIlmu9sjlL8AsGLnkOSzbZb9stkK-y_N3WrggdPMzDPvDM8AJxjdI0RzW8iw1xQiAiCCOVcQXoA5phJAZkQ6HDfY0zIDJzEuEGIYM7FMZhRSlWOsZwD2sJh7H3m1iasfDYE08a-C0NWtdnam4-qHrMeFl3vi6zv6rHxIZ6Co9LU0Z_t6wK83d-9Lh_h88vD0_L2GTqW8yE9oSxjiCNjVYE4Q0wZm3vOmDXCpfOWyVJYTxxhVhAnc1EqR2ihSu5zJOkCXE25fejetz4Ouqmi83VtWt9toyZMcqqkkDShl3_QTbcNbfpOE444l0RIlSgyUS50MQZf6j5UjQmjxkjvlOpJqU5K9ZdSvYu-2EdvbeOLn5VvhwmgExDTqF358Hv7n9hPtFd_Ow</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Liang, Zhiming</creator><creator>Choi, Hyun Ho</creator><creator>Luo, Xuyi</creator><creator>Liu, Tuo</creator><creator>Abtahi, Ashkan</creator><creator>Ramasamy, Uma Shantini</creator><creator>Hitron, J. Andrew</creator><creator>Baustert, Kyle N.</creator><creator>Hempel, Jacob L.</creator><creator>Boehm, Alex M.</creator><creator>Ansary, Armin</creator><creator>Strachan, Douglas R.</creator><creator>Mei, Jianguo</creator><creator>Risko, Chad</creator><creator>Podzorov, Vitaly</creator><creator>Graham, Kenneth R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9599-1745</orcidid><orcidid>https://orcid.org/0000-0002-6387-3998</orcidid><orcidid>https://orcid.org/0000-0001-6185-0605</orcidid><orcidid>https://orcid.org/0000-0002-5743-2715</orcidid><orcidid>https://orcid.org/0000-0001-9838-5233</orcidid></search><sort><creationdate>20210401</creationdate><title>n-type charge transport in heavily p-doped polymers</title><author>Liang, Zhiming ; Choi, Hyun Ho ; Luo, Xuyi ; Liu, Tuo ; Abtahi, Ashkan ; Ramasamy, Uma Shantini ; Hitron, J. Andrew ; Baustert, Kyle N. ; Hempel, Jacob L. ; Boehm, Alex M. ; Ansary, Armin ; Strachan, Douglas R. ; Mei, Jianguo ; Risko, Chad ; Podzorov, Vitaly ; Graham, Kenneth R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-469b44050ab9d054049ab8e544ba6c811b47f6be2c24b62c786f9c23d9f5e8073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301</topic><topic>639/638</topic><topic>639/638/298</topic><topic>639/638/440</topic><topic>639/638/455</topic><topic>Biomaterials</topic><topic>Carrier transport</topic><topic>Charge transport</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Current carriers</topic><topic>Dopants</topic><topic>Doping</topic><topic>Electromagnetism</topic><topic>Electrons</topic><topic>Ferric chloride</topic><topic>Hall effect</topic><topic>Iron chlorides</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Photoelectrons</topic><topic>Polymers</topic><topic>Seebeck effect</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Zhiming</creatorcontrib><creatorcontrib>Choi, Hyun Ho</creatorcontrib><creatorcontrib>Luo, Xuyi</creatorcontrib><creatorcontrib>Liu, Tuo</creatorcontrib><creatorcontrib>Abtahi, Ashkan</creatorcontrib><creatorcontrib>Ramasamy, Uma Shantini</creatorcontrib><creatorcontrib>Hitron, J. Andrew</creatorcontrib><creatorcontrib>Baustert, Kyle N.</creatorcontrib><creatorcontrib>Hempel, Jacob L.</creatorcontrib><creatorcontrib>Boehm, Alex M.</creatorcontrib><creatorcontrib>Ansary, Armin</creatorcontrib><creatorcontrib>Strachan, Douglas R.</creatorcontrib><creatorcontrib>Mei, Jianguo</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Podzorov, Vitaly</creatorcontrib><creatorcontrib>Graham, Kenneth R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Zhiming</au><au>Choi, Hyun Ho</au><au>Luo, Xuyi</au><au>Liu, Tuo</au><au>Abtahi, Ashkan</au><au>Ramasamy, Uma Shantini</au><au>Hitron, J. Andrew</au><au>Baustert, Kyle N.</au><au>Hempel, Jacob L.</au><au>Boehm, Alex M.</au><au>Ansary, Armin</au><au>Strachan, Douglas R.</au><au>Mei, Jianguo</au><au>Risko, Chad</au><au>Podzorov, Vitaly</au><au>Graham, Kenneth R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>n-type charge transport in heavily p-doped polymers</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>20</volume><issue>4</issue><spage>518</spage><epage>524</epage><pages>518-524</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl 3 or NOBF 4 increase, and Hall effect measurements for the same p - doped polymers reveal that electrons become the dominant delocalized charge carriers. Ultraviolet and inverse photoelectron spectroscopy measurements show that doping with oxidizing agents results in elimination of the transport gap at high doping concentrations. This approach of heavy p-type doping is demonstrated to provide a promising route to high-performance n-type organic thermoelectric materials. A broad range of characterization techniques is used to understand the dominant electron conduction in various p-type doped π-conjugated polymers, which show p-type and n-type thermoelectric power factors depending on the dopant concentration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33398117</pmid><doi>10.1038/s41563-020-00859-3</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9599-1745</orcidid><orcidid>https://orcid.org/0000-0002-6387-3998</orcidid><orcidid>https://orcid.org/0000-0001-6185-0605</orcidid><orcidid>https://orcid.org/0000-0002-5743-2715</orcidid><orcidid>https://orcid.org/0000-0001-9838-5233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2021-04, Vol.20 (4), p.518-524
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2475397673
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/301
639/638
639/638/298
639/638/440
639/638/455
Biomaterials
Carrier transport
Charge transport
Chemistry and Materials Science
Condensed Matter Physics
Current carriers
Dopants
Doping
Electromagnetism
Electrons
Ferric chloride
Hall effect
Iron chlorides
Materials Science
Nanotechnology
Optical and Electronic Materials
Oxidation
Oxidizing agents
Photoelectrons
Polymers
Seebeck effect
Thermoelectric materials
title n-type charge transport in heavily p-doped polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=n-type%20charge%20transport%20in%20heavily%20p-doped%20polymers&rft.jtitle=Nature%20materials&rft.au=Liang,%20Zhiming&rft.date=2021-04-01&rft.volume=20&rft.issue=4&rft.spage=518&rft.epage=524&rft.pages=518-524&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-020-00859-3&rft_dat=%3Cproquest_cross%3E2475397673%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505572679&rft_id=info:pmid/33398117&rfr_iscdi=true