n-type charge transport in heavily p-doped polymers
It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contr...
Gespeichert in:
Veröffentlicht in: | Nature materials 2021-04, Vol.20 (4), p.518-524 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 524 |
---|---|
container_issue | 4 |
container_start_page | 518 |
container_title | Nature materials |
container_volume | 20 |
creator | Liang, Zhiming Choi, Hyun Ho Luo, Xuyi Liu, Tuo Abtahi, Ashkan Ramasamy, Uma Shantini Hitron, J. Andrew Baustert, Kyle N. Hempel, Jacob L. Boehm, Alex M. Ansary, Armin Strachan, Douglas R. Mei, Jianguo Risko, Chad Podzorov, Vitaly Graham, Kenneth R. |
description | It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl
3
or NOBF
4
increase, and Hall effect measurements for the same p
-
doped polymers reveal that electrons become the dominant delocalized charge carriers. Ultraviolet and inverse photoelectron spectroscopy measurements show that doping with oxidizing agents results in elimination of the transport gap at high doping concentrations. This approach of heavy p-type doping is demonstrated to provide a promising route to high-performance n-type organic thermoelectric materials.
A broad range of characterization techniques is used to understand the dominant electron conduction in various p-type doped π-conjugated polymers, which show p-type and n-type thermoelectric power factors depending on the dopant concentration. |
doi_str_mv | 10.1038/s41563-020-00859-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475397673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475397673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-469b44050ab9d054049ab8e544ba6c811b47f6be2c24b62c786f9c23d9f5e8073</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAdZ8OIlmu9sjlL8AsGLnkOSzbZb9stkK-y_N3WrggdPMzDPvDM8AJxjdI0RzW8iw1xQiAiCCOVcQXoA5phJAZkQ6HDfY0zIDJzEuEGIYM7FMZhRSlWOsZwD2sJh7H3m1iasfDYE08a-C0NWtdnam4-qHrMeFl3vi6zv6rHxIZ6Co9LU0Z_t6wK83d-9Lh_h88vD0_L2GTqW8yE9oSxjiCNjVYE4Q0wZm3vOmDXCpfOWyVJYTxxhVhAnc1EqR2ihSu5zJOkCXE25fejetz4Ouqmi83VtWt9toyZMcqqkkDShl3_QTbcNbfpOE444l0RIlSgyUS50MQZf6j5UjQmjxkjvlOpJqU5K9ZdSvYu-2EdvbeOLn5VvhwmgExDTqF358Hv7n9hPtFd_Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505572679</pqid></control><display><type>article</type><title>n-type charge transport in heavily p-doped polymers</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Liang, Zhiming ; Choi, Hyun Ho ; Luo, Xuyi ; Liu, Tuo ; Abtahi, Ashkan ; Ramasamy, Uma Shantini ; Hitron, J. Andrew ; Baustert, Kyle N. ; Hempel, Jacob L. ; Boehm, Alex M. ; Ansary, Armin ; Strachan, Douglas R. ; Mei, Jianguo ; Risko, Chad ; Podzorov, Vitaly ; Graham, Kenneth R.</creator><creatorcontrib>Liang, Zhiming ; Choi, Hyun Ho ; Luo, Xuyi ; Liu, Tuo ; Abtahi, Ashkan ; Ramasamy, Uma Shantini ; Hitron, J. Andrew ; Baustert, Kyle N. ; Hempel, Jacob L. ; Boehm, Alex M. ; Ansary, Armin ; Strachan, Douglas R. ; Mei, Jianguo ; Risko, Chad ; Podzorov, Vitaly ; Graham, Kenneth R.</creatorcontrib><description>It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl
3
or NOBF
4
increase, and Hall effect measurements for the same p
-
doped polymers reveal that electrons become the dominant delocalized charge carriers. Ultraviolet and inverse photoelectron spectroscopy measurements show that doping with oxidizing agents results in elimination of the transport gap at high doping concentrations. This approach of heavy p-type doping is demonstrated to provide a promising route to high-performance n-type organic thermoelectric materials.
A broad range of characterization techniques is used to understand the dominant electron conduction in various p-type doped π-conjugated polymers, which show p-type and n-type thermoelectric power factors depending on the dopant concentration.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-020-00859-3</identifier><identifier>PMID: 33398117</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/638 ; 639/638/298 ; 639/638/440 ; 639/638/455 ; Biomaterials ; Carrier transport ; Charge transport ; Chemistry and Materials Science ; Condensed Matter Physics ; Current carriers ; Dopants ; Doping ; Electromagnetism ; Electrons ; Ferric chloride ; Hall effect ; Iron chlorides ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Oxidation ; Oxidizing agents ; Photoelectrons ; Polymers ; Seebeck effect ; Thermoelectric materials</subject><ispartof>Nature materials, 2021-04, Vol.20 (4), p.518-524</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-469b44050ab9d054049ab8e544ba6c811b47f6be2c24b62c786f9c23d9f5e8073</citedby><cites>FETCH-LOGICAL-c485t-469b44050ab9d054049ab8e544ba6c811b47f6be2c24b62c786f9c23d9f5e8073</cites><orcidid>0000-0002-9599-1745 ; 0000-0002-6387-3998 ; 0000-0001-6185-0605 ; 0000-0002-5743-2715 ; 0000-0001-9838-5233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-020-00859-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-020-00859-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33398117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Zhiming</creatorcontrib><creatorcontrib>Choi, Hyun Ho</creatorcontrib><creatorcontrib>Luo, Xuyi</creatorcontrib><creatorcontrib>Liu, Tuo</creatorcontrib><creatorcontrib>Abtahi, Ashkan</creatorcontrib><creatorcontrib>Ramasamy, Uma Shantini</creatorcontrib><creatorcontrib>Hitron, J. Andrew</creatorcontrib><creatorcontrib>Baustert, Kyle N.</creatorcontrib><creatorcontrib>Hempel, Jacob L.</creatorcontrib><creatorcontrib>Boehm, Alex M.</creatorcontrib><creatorcontrib>Ansary, Armin</creatorcontrib><creatorcontrib>Strachan, Douglas R.</creatorcontrib><creatorcontrib>Mei, Jianguo</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Podzorov, Vitaly</creatorcontrib><creatorcontrib>Graham, Kenneth R.</creatorcontrib><title>n-type charge transport in heavily p-doped polymers</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl
3
or NOBF
4
increase, and Hall effect measurements for the same p
-
doped polymers reveal that electrons become the dominant delocalized charge carriers. Ultraviolet and inverse photoelectron spectroscopy measurements show that doping with oxidizing agents results in elimination of the transport gap at high doping concentrations. This approach of heavy p-type doping is demonstrated to provide a promising route to high-performance n-type organic thermoelectric materials.
A broad range of characterization techniques is used to understand the dominant electron conduction in various p-type doped π-conjugated polymers, which show p-type and n-type thermoelectric power factors depending on the dopant concentration.</description><subject>639/301</subject><subject>639/638</subject><subject>639/638/298</subject><subject>639/638/440</subject><subject>639/638/455</subject><subject>Biomaterials</subject><subject>Carrier transport</subject><subject>Charge transport</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Current carriers</subject><subject>Dopants</subject><subject>Doping</subject><subject>Electromagnetism</subject><subject>Electrons</subject><subject>Ferric chloride</subject><subject>Hall effect</subject><subject>Iron chlorides</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Photoelectrons</subject><subject>Polymers</subject><subject>Seebeck effect</subject><subject>Thermoelectric materials</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gAdZ8OIlmu9sjlL8AsGLnkOSzbZb9stkK-y_N3WrggdPMzDPvDM8AJxjdI0RzW8iw1xQiAiCCOVcQXoA5phJAZkQ6HDfY0zIDJzEuEGIYM7FMZhRSlWOsZwD2sJh7H3m1iasfDYE08a-C0NWtdnam4-qHrMeFl3vi6zv6rHxIZ6Co9LU0Z_t6wK83d-9Lh_h88vD0_L2GTqW8yE9oSxjiCNjVYE4Q0wZm3vOmDXCpfOWyVJYTxxhVhAnc1EqR2ihSu5zJOkCXE25fejetz4Ouqmi83VtWt9toyZMcqqkkDShl3_QTbcNbfpOE444l0RIlSgyUS50MQZf6j5UjQmjxkjvlOpJqU5K9ZdSvYu-2EdvbeOLn5VvhwmgExDTqF358Hv7n9hPtFd_Ow</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Liang, Zhiming</creator><creator>Choi, Hyun Ho</creator><creator>Luo, Xuyi</creator><creator>Liu, Tuo</creator><creator>Abtahi, Ashkan</creator><creator>Ramasamy, Uma Shantini</creator><creator>Hitron, J. Andrew</creator><creator>Baustert, Kyle N.</creator><creator>Hempel, Jacob L.</creator><creator>Boehm, Alex M.</creator><creator>Ansary, Armin</creator><creator>Strachan, Douglas R.</creator><creator>Mei, Jianguo</creator><creator>Risko, Chad</creator><creator>Podzorov, Vitaly</creator><creator>Graham, Kenneth R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9599-1745</orcidid><orcidid>https://orcid.org/0000-0002-6387-3998</orcidid><orcidid>https://orcid.org/0000-0001-6185-0605</orcidid><orcidid>https://orcid.org/0000-0002-5743-2715</orcidid><orcidid>https://orcid.org/0000-0001-9838-5233</orcidid></search><sort><creationdate>20210401</creationdate><title>n-type charge transport in heavily p-doped polymers</title><author>Liang, Zhiming ; Choi, Hyun Ho ; Luo, Xuyi ; Liu, Tuo ; Abtahi, Ashkan ; Ramasamy, Uma Shantini ; Hitron, J. Andrew ; Baustert, Kyle N. ; Hempel, Jacob L. ; Boehm, Alex M. ; Ansary, Armin ; Strachan, Douglas R. ; Mei, Jianguo ; Risko, Chad ; Podzorov, Vitaly ; Graham, Kenneth R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-469b44050ab9d054049ab8e544ba6c811b47f6be2c24b62c786f9c23d9f5e8073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301</topic><topic>639/638</topic><topic>639/638/298</topic><topic>639/638/440</topic><topic>639/638/455</topic><topic>Biomaterials</topic><topic>Carrier transport</topic><topic>Charge transport</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Current carriers</topic><topic>Dopants</topic><topic>Doping</topic><topic>Electromagnetism</topic><topic>Electrons</topic><topic>Ferric chloride</topic><topic>Hall effect</topic><topic>Iron chlorides</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Photoelectrons</topic><topic>Polymers</topic><topic>Seebeck effect</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Zhiming</creatorcontrib><creatorcontrib>Choi, Hyun Ho</creatorcontrib><creatorcontrib>Luo, Xuyi</creatorcontrib><creatorcontrib>Liu, Tuo</creatorcontrib><creatorcontrib>Abtahi, Ashkan</creatorcontrib><creatorcontrib>Ramasamy, Uma Shantini</creatorcontrib><creatorcontrib>Hitron, J. Andrew</creatorcontrib><creatorcontrib>Baustert, Kyle N.</creatorcontrib><creatorcontrib>Hempel, Jacob L.</creatorcontrib><creatorcontrib>Boehm, Alex M.</creatorcontrib><creatorcontrib>Ansary, Armin</creatorcontrib><creatorcontrib>Strachan, Douglas R.</creatorcontrib><creatorcontrib>Mei, Jianguo</creatorcontrib><creatorcontrib>Risko, Chad</creatorcontrib><creatorcontrib>Podzorov, Vitaly</creatorcontrib><creatorcontrib>Graham, Kenneth R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Zhiming</au><au>Choi, Hyun Ho</au><au>Luo, Xuyi</au><au>Liu, Tuo</au><au>Abtahi, Ashkan</au><au>Ramasamy, Uma Shantini</au><au>Hitron, J. Andrew</au><au>Baustert, Kyle N.</au><au>Hempel, Jacob L.</au><au>Boehm, Alex M.</au><au>Ansary, Armin</au><au>Strachan, Douglas R.</au><au>Mei, Jianguo</au><au>Risko, Chad</au><au>Podzorov, Vitaly</au><au>Graham, Kenneth R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>n-type charge transport in heavily p-doped polymers</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>20</volume><issue>4</issue><spage>518</spage><epage>524</epage><pages>518-524</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl
3
or NOBF
4
increase, and Hall effect measurements for the same p
-
doped polymers reveal that electrons become the dominant delocalized charge carriers. Ultraviolet and inverse photoelectron spectroscopy measurements show that doping with oxidizing agents results in elimination of the transport gap at high doping concentrations. This approach of heavy p-type doping is demonstrated to provide a promising route to high-performance n-type organic thermoelectric materials.
A broad range of characterization techniques is used to understand the dominant electron conduction in various p-type doped π-conjugated polymers, which show p-type and n-type thermoelectric power factors depending on the dopant concentration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33398117</pmid><doi>10.1038/s41563-020-00859-3</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9599-1745</orcidid><orcidid>https://orcid.org/0000-0002-6387-3998</orcidid><orcidid>https://orcid.org/0000-0001-6185-0605</orcidid><orcidid>https://orcid.org/0000-0002-5743-2715</orcidid><orcidid>https://orcid.org/0000-0001-9838-5233</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2021-04, Vol.20 (4), p.518-524 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_2475397673 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/301 639/638 639/638/298 639/638/440 639/638/455 Biomaterials Carrier transport Charge transport Chemistry and Materials Science Condensed Matter Physics Current carriers Dopants Doping Electromagnetism Electrons Ferric chloride Hall effect Iron chlorides Materials Science Nanotechnology Optical and Electronic Materials Oxidation Oxidizing agents Photoelectrons Polymers Seebeck effect Thermoelectric materials |
title | n-type charge transport in heavily p-doped polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=n-type%20charge%20transport%20in%20heavily%20p-doped%20polymers&rft.jtitle=Nature%20materials&rft.au=Liang,%20Zhiming&rft.date=2021-04-01&rft.volume=20&rft.issue=4&rft.spage=518&rft.epage=524&rft.pages=518-524&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-020-00859-3&rft_dat=%3Cproquest_cross%3E2475397673%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505572679&rft_id=info:pmid/33398117&rfr_iscdi=true |