Shell properties and concentration stability of acoustofluidic delivery agents
This paper investigates the shell elastic properties and the number-concentration stability of a new acoustofluidic delivery agent liposome in comparison to Definity™, a monolayer ultrasonic contrast agent microbubble. The frequency dependent attenuation of an acoustic beam passing through a microbu...
Gespeichert in:
Veröffentlicht in: | Australasian physical & engineering sciences in medicine 2021-03, Vol.44 (1), p.79-91 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | 1 |
container_start_page | 79 |
container_title | Australasian physical & engineering sciences in medicine |
container_volume | 44 |
creator | Alsadiq, Hussain Tupally, Karnaker Vogel, Robert Kokil, Ganesh Parekh, Harendra S. Veidt, Martin |
description | This paper investigates the shell elastic properties and the number-concentration stability of a new acoustofluidic delivery agent liposome in comparison to Definity™, a monolayer ultrasonic contrast agent microbubble. The frequency dependent attenuation of an acoustic beam passing through a microbubble suspension was measured to estimate the shell parameters. The excitation voltage was adjusted to ensure constant acoustic pressure at all frequencies. The pressure was kept at the lowest possible magnitude to ensure that effects from nonlinear bubble behaviour which are not considered in the analytical model were minimal. The acoustofluidic delivery agent shell stiffness
S
p
and friction
S
f
parameters were determined as (
S
p
= 0.11 N/m,
S
f
= 0.31 × 10
−6
Kg/s
at
25 °C) in comparison to the Definity™ monolayer ultrasound contrast agent which were (
S
p
= 1.53 N/m,
S
f
= 1.51 × 10
−6
Kg/s
at
25 °C). When the temperature was raised to physiological levels, the friction coefficient
S
f
decreased by 28% for the monolayer microbubbles and by only 9% for the liposomes. The stiffness parameter
S
p
of the monolayer microbubble decreased by 23% while the stiffness parameter of the liposome increased by a similar margin (27%) when the temperature was raised to 37 °C. The size distribution of the bubbles was measured using Tunable Resistive Pulse Sensing (TRPS) for freshly prepared microbubbles and for bubble solutions at 6 h and 24 h after activation to investigate their number-concentration stability profile. The liposome maintained >80% of their number-concentration for 24 h at physiological temperature, while the monolayer microbubbles maintained only 27% of their number-concentration over the same period. These results are important input parameters for the design of effective acoustofluidic delivery systems using the new liposomes. |
doi_str_mv | 10.1007/s13246-020-00954-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475397662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2496269895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-5f05c296fab7b85778a0efc6986741e7890040b7227c12a591b7bad96b14bfd93</originalsourceid><addsrcrecordid>eNp9kEtLAzEYRYMottT-ARcScONmNO80Sym-oOhCXYdMJlNTppOazAj990anVnDhKoGc-303B4BTjC4xQvIqYUqYKBBBBUKKs4IdgDERghRMUnm4vxM1AtOUVgghwjGWgh-DEaVUzQSVY_D4_OaaBm5i2LjYeZegaStoQ2td20XT-dDC1JnSN77bwlBDY0OfulA3va-8hZVr_IeLW2iWOZBOwFFtmuSmu3MCXm9vXub3xeLp7mF-vSgsw6wreI24JUrUppTljEs5M8jVVuRSkmEnZwohhkpJiLSYGK5w5kylRIlZWVeKTsDFMDcXf-9d6vTaJ5t_YlqX-2nCJKdKZgUZPf-DrkIf29wuU0qQvFTxTJGBsjGkFF2tN9GvTdxqjPSXcD0I11m4_hauWQ6d7Ub35dpV-8iP3gzQAUj5qV26-Lv7n7GfPU-K_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2496269895</pqid></control><display><type>article</type><title>Shell properties and concentration stability of acoustofluidic delivery agents</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alsadiq, Hussain ; Tupally, Karnaker ; Vogel, Robert ; Kokil, Ganesh ; Parekh, Harendra S. ; Veidt, Martin</creator><creatorcontrib>Alsadiq, Hussain ; Tupally, Karnaker ; Vogel, Robert ; Kokil, Ganesh ; Parekh, Harendra S. ; Veidt, Martin</creatorcontrib><description>This paper investigates the shell elastic properties and the number-concentration stability of a new acoustofluidic delivery agent liposome in comparison to Definity™, a monolayer ultrasonic contrast agent microbubble. The frequency dependent attenuation of an acoustic beam passing through a microbubble suspension was measured to estimate the shell parameters. The excitation voltage was adjusted to ensure constant acoustic pressure at all frequencies. The pressure was kept at the lowest possible magnitude to ensure that effects from nonlinear bubble behaviour which are not considered in the analytical model were minimal. The acoustofluidic delivery agent shell stiffness
S
p
and friction
S
f
parameters were determined as (
S
p
= 0.11 N/m,
S
f
= 0.31 × 10
−6
Kg/s
at
25 °C) in comparison to the Definity™ monolayer ultrasound contrast agent which were (
S
p
= 1.53 N/m,
S
f
= 1.51 × 10
−6
Kg/s
at
25 °C). When the temperature was raised to physiological levels, the friction coefficient
S
f
decreased by 28% for the monolayer microbubbles and by only 9% for the liposomes. The stiffness parameter
S
p
of the monolayer microbubble decreased by 23% while the stiffness parameter of the liposome increased by a similar margin (27%) when the temperature was raised to 37 °C. The size distribution of the bubbles was measured using Tunable Resistive Pulse Sensing (TRPS) for freshly prepared microbubbles and for bubble solutions at 6 h and 24 h after activation to investigate their number-concentration stability profile. The liposome maintained >80% of their number-concentration for 24 h at physiological temperature, while the monolayer microbubbles maintained only 27% of their number-concentration over the same period. These results are important input parameters for the design of effective acoustofluidic delivery systems using the new liposomes.</description><identifier>ISSN: 2662-4729</identifier><identifier>ISSN: 0158-9938</identifier><identifier>EISSN: 2662-4737</identifier><identifier>EISSN: 1879-5447</identifier><identifier>DOI: 10.1007/s13246-020-00954-4</identifier><identifier>PMID: 33398637</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acoustic attenuation ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Coefficient of friction ; Contrast agents ; Design parameters ; Elastic properties ; Liposomes ; Medical and Radiation Physics ; Monolayers ; Parameter estimation ; Physiology ; Scientific Paper ; Shell stability ; Size distribution ; Stiffness ; System effectiveness ; Ultrasonic attenuation</subject><ispartof>Australasian physical & engineering sciences in medicine, 2021-03, Vol.44 (1), p.79-91</ispartof><rights>Australasian College of Physical Scientists and Engineers in Medicine 2021</rights><rights>Australasian College of Physical Scientists and Engineers in Medicine 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-5f05c296fab7b85778a0efc6986741e7890040b7227c12a591b7bad96b14bfd93</citedby><cites>FETCH-LOGICAL-c414t-5f05c296fab7b85778a0efc6986741e7890040b7227c12a591b7bad96b14bfd93</cites><orcidid>0000-0003-2826-4510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13246-020-00954-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13246-020-00954-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33398637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alsadiq, Hussain</creatorcontrib><creatorcontrib>Tupally, Karnaker</creatorcontrib><creatorcontrib>Vogel, Robert</creatorcontrib><creatorcontrib>Kokil, Ganesh</creatorcontrib><creatorcontrib>Parekh, Harendra S.</creatorcontrib><creatorcontrib>Veidt, Martin</creatorcontrib><title>Shell properties and concentration stability of acoustofluidic delivery agents</title><title>Australasian physical & engineering sciences in medicine</title><addtitle>Phys Eng Sci Med</addtitle><addtitle>Phys Eng Sci Med</addtitle><description>This paper investigates the shell elastic properties and the number-concentration stability of a new acoustofluidic delivery agent liposome in comparison to Definity™, a monolayer ultrasonic contrast agent microbubble. The frequency dependent attenuation of an acoustic beam passing through a microbubble suspension was measured to estimate the shell parameters. The excitation voltage was adjusted to ensure constant acoustic pressure at all frequencies. The pressure was kept at the lowest possible magnitude to ensure that effects from nonlinear bubble behaviour which are not considered in the analytical model were minimal. The acoustofluidic delivery agent shell stiffness
S
p
and friction
S
f
parameters were determined as (
S
p
= 0.11 N/m,
S
f
= 0.31 × 10
−6
Kg/s
at
25 °C) in comparison to the Definity™ monolayer ultrasound contrast agent which were (
S
p
= 1.53 N/m,
S
f
= 1.51 × 10
−6
Kg/s
at
25 °C). When the temperature was raised to physiological levels, the friction coefficient
S
f
decreased by 28% for the monolayer microbubbles and by only 9% for the liposomes. The stiffness parameter
S
p
of the monolayer microbubble decreased by 23% while the stiffness parameter of the liposome increased by a similar margin (27%) when the temperature was raised to 37 °C. The size distribution of the bubbles was measured using Tunable Resistive Pulse Sensing (TRPS) for freshly prepared microbubbles and for bubble solutions at 6 h and 24 h after activation to investigate their number-concentration stability profile. The liposome maintained >80% of their number-concentration for 24 h at physiological temperature, while the monolayer microbubbles maintained only 27% of their number-concentration over the same period. These results are important input parameters for the design of effective acoustofluidic delivery systems using the new liposomes.</description><subject>Acoustic attenuation</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Coefficient of friction</subject><subject>Contrast agents</subject><subject>Design parameters</subject><subject>Elastic properties</subject><subject>Liposomes</subject><subject>Medical and Radiation Physics</subject><subject>Monolayers</subject><subject>Parameter estimation</subject><subject>Physiology</subject><subject>Scientific Paper</subject><subject>Shell stability</subject><subject>Size distribution</subject><subject>Stiffness</subject><subject>System effectiveness</subject><subject>Ultrasonic attenuation</subject><issn>2662-4729</issn><issn>0158-9938</issn><issn>2662-4737</issn><issn>1879-5447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEYRYMottT-ARcScONmNO80Sym-oOhCXYdMJlNTppOazAj990anVnDhKoGc-303B4BTjC4xQvIqYUqYKBBBBUKKs4IdgDERghRMUnm4vxM1AtOUVgghwjGWgh-DEaVUzQSVY_D4_OaaBm5i2LjYeZegaStoQ2td20XT-dDC1JnSN77bwlBDY0OfulA3va-8hZVr_IeLW2iWOZBOwFFtmuSmu3MCXm9vXub3xeLp7mF-vSgsw6wreI24JUrUppTljEs5M8jVVuRSkmEnZwohhkpJiLSYGK5w5kylRIlZWVeKTsDFMDcXf-9d6vTaJ5t_YlqX-2nCJKdKZgUZPf-DrkIf29wuU0qQvFTxTJGBsjGkFF2tN9GvTdxqjPSXcD0I11m4_hauWQ6d7Ub35dpV-8iP3gzQAUj5qV26-Lv7n7GfPU-K_A</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Alsadiq, Hussain</creator><creator>Tupally, Karnaker</creator><creator>Vogel, Robert</creator><creator>Kokil, Ganesh</creator><creator>Parekh, Harendra S.</creator><creator>Veidt, Martin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2826-4510</orcidid></search><sort><creationdate>20210301</creationdate><title>Shell properties and concentration stability of acoustofluidic delivery agents</title><author>Alsadiq, Hussain ; Tupally, Karnaker ; Vogel, Robert ; Kokil, Ganesh ; Parekh, Harendra S. ; Veidt, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-5f05c296fab7b85778a0efc6986741e7890040b7227c12a591b7bad96b14bfd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic attenuation</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Coefficient of friction</topic><topic>Contrast agents</topic><topic>Design parameters</topic><topic>Elastic properties</topic><topic>Liposomes</topic><topic>Medical and Radiation Physics</topic><topic>Monolayers</topic><topic>Parameter estimation</topic><topic>Physiology</topic><topic>Scientific Paper</topic><topic>Shell stability</topic><topic>Size distribution</topic><topic>Stiffness</topic><topic>System effectiveness</topic><topic>Ultrasonic attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alsadiq, Hussain</creatorcontrib><creatorcontrib>Tupally, Karnaker</creatorcontrib><creatorcontrib>Vogel, Robert</creatorcontrib><creatorcontrib>Kokil, Ganesh</creatorcontrib><creatorcontrib>Parekh, Harendra S.</creatorcontrib><creatorcontrib>Veidt, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Australasian physical & engineering sciences in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alsadiq, Hussain</au><au>Tupally, Karnaker</au><au>Vogel, Robert</au><au>Kokil, Ganesh</au><au>Parekh, Harendra S.</au><au>Veidt, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shell properties and concentration stability of acoustofluidic delivery agents</atitle><jtitle>Australasian physical & engineering sciences in medicine</jtitle><stitle>Phys Eng Sci Med</stitle><addtitle>Phys Eng Sci Med</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>44</volume><issue>1</issue><spage>79</spage><epage>91</epage><pages>79-91</pages><issn>2662-4729</issn><issn>0158-9938</issn><eissn>2662-4737</eissn><eissn>1879-5447</eissn><abstract>This paper investigates the shell elastic properties and the number-concentration stability of a new acoustofluidic delivery agent liposome in comparison to Definity™, a monolayer ultrasonic contrast agent microbubble. The frequency dependent attenuation of an acoustic beam passing through a microbubble suspension was measured to estimate the shell parameters. The excitation voltage was adjusted to ensure constant acoustic pressure at all frequencies. The pressure was kept at the lowest possible magnitude to ensure that effects from nonlinear bubble behaviour which are not considered in the analytical model were minimal. The acoustofluidic delivery agent shell stiffness
S
p
and friction
S
f
parameters were determined as (
S
p
= 0.11 N/m,
S
f
= 0.31 × 10
−6
Kg/s
at
25 °C) in comparison to the Definity™ monolayer ultrasound contrast agent which were (
S
p
= 1.53 N/m,
S
f
= 1.51 × 10
−6
Kg/s
at
25 °C). When the temperature was raised to physiological levels, the friction coefficient
S
f
decreased by 28% for the monolayer microbubbles and by only 9% for the liposomes. The stiffness parameter
S
p
of the monolayer microbubble decreased by 23% while the stiffness parameter of the liposome increased by a similar margin (27%) when the temperature was raised to 37 °C. The size distribution of the bubbles was measured using Tunable Resistive Pulse Sensing (TRPS) for freshly prepared microbubbles and for bubble solutions at 6 h and 24 h after activation to investigate their number-concentration stability profile. The liposome maintained >80% of their number-concentration for 24 h at physiological temperature, while the monolayer microbubbles maintained only 27% of their number-concentration over the same period. These results are important input parameters for the design of effective acoustofluidic delivery systems using the new liposomes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>33398637</pmid><doi>10.1007/s13246-020-00954-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2826-4510</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-4729 |
ispartof | Australasian physical & engineering sciences in medicine, 2021-03, Vol.44 (1), p.79-91 |
issn | 2662-4729 0158-9938 2662-4737 1879-5447 |
language | eng |
recordid | cdi_proquest_miscellaneous_2475397662 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acoustic attenuation Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Coefficient of friction Contrast agents Design parameters Elastic properties Liposomes Medical and Radiation Physics Monolayers Parameter estimation Physiology Scientific Paper Shell stability Size distribution Stiffness System effectiveness Ultrasonic attenuation |
title | Shell properties and concentration stability of acoustofluidic delivery agents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shell%20properties%20and%20concentration%20stability%20of%20acoustofluidic%20delivery%20agents&rft.jtitle=Australasian%20physical%20&%20engineering%20sciences%20in%20medicine&rft.au=Alsadiq,%20Hussain&rft.date=2021-03-01&rft.volume=44&rft.issue=1&rft.spage=79&rft.epage=91&rft.pages=79-91&rft.issn=2662-4729&rft.eissn=2662-4737&rft_id=info:doi/10.1007/s13246-020-00954-4&rft_dat=%3Cproquest_cross%3E2496269895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2496269895&rft_id=info:pmid/33398637&rfr_iscdi=true |