Comparison of traditional and synchrotron beam methodologies in Mössbauer experiments in a rotating system
Recent Mössbauer experiments in a rotating system reported by others in the literature have involved the application of synchrotron radiation onto a spinning semi‐circular resonant absorber. Here, the physical interpretation of these methodologies, and their alleged performance improvement, is analy...
Gespeichert in:
Veröffentlicht in: | Journal of synchrotron radiation 2021-01, Vol.28 (1), p.78-85 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 78 |
container_title | Journal of synchrotron radiation |
container_volume | 28 |
creator | Kholmetskii, A. L. Yarman, T. Yarman, O. Arik, M. |
description | Recent Mössbauer experiments in a rotating system reported by others in the literature have involved the application of synchrotron radiation onto a spinning semi‐circular resonant absorber. Here, the physical interpretation of these methodologies, and their alleged performance improvement, is analyzed in the light of our own team's past experience based instead on the traditional laboratory setup. It is shown that a number of fundamental shortcomings in the approach reported in the literature deprives it of any practical significance with respect to the improvement of the technique of Mössbauer rotor experiments with a synchrotron source. It is concluded that, at present, only Mössbauer experiments relying on an ordinary compact source of resonant radiation and a resonant absorber both fixed on the rotor promise to provide crucial information with respect to the physical origin of the observed energy shift between emitted and absorbed resonant radiation in a rotating system.
The performance of various Mössbauer experiments in a rotating system with synchrotron radiation and with an ordinary source of resonant γ‐quanta is analyzed. |
doi_str_mv | 10.1107/S1600577520013703 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475396786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475101471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4225-6ddbde9c567c50ed1f1c869c68a2abfbd27683d8bc857bc3c5eee72f5fe4f3763</originalsourceid><addsrcrecordid>eNqFkctKBDEQRYMovj_AjQTcuBnNY5J0L2XwiSL4AldNOqnWaHdnTLrR-TF_wB8z46iILlxVUXXuhVuF0AYlO5QStXtJJSFCKcEIoVwRPoeWp6PBdDb_o19CKzE-JEgqxhfREuc8z4UQy-hx5JuxDi76FvsKd0Fb1znf6hrr1uI4ac198F1I6xJ0gxvo7r31tb9zELFr8dnba4yl7iFgeBlDcA203cdG4yTUnWvvkk3soFlDC5WuI6x_1lV0fbB_NToanJ4fHo_2TgdmyJgYSGtLC7kRUhlBwNKKmkzmRmaa6bIqLVMy4zYrTSZUabgRAKBYJSoYVlxJvoq2Z77j4J96iF3RuGigrnULvo8FGyrBc6myKbr1C33wfUjpZxQldKhoouiMMsHHGKAqximnDpOCkmL6ieLPJ5Jm89O5Lxuw34qv0ycgnwHProbJ_47FyeUtu7gRlAv-DuTxlqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475101471</pqid></control><display><type>article</type><title>Comparison of traditional and synchrotron beam methodologies in Mössbauer experiments in a rotating system</title><source>Wiley Online Library (Open Access Collection)</source><creator>Kholmetskii, A. L. ; Yarman, T. ; Yarman, O. ; Arik, M.</creator><creatorcontrib>Kholmetskii, A. L. ; Yarman, T. ; Yarman, O. ; Arik, M.</creatorcontrib><description>Recent Mössbauer experiments in a rotating system reported by others in the literature have involved the application of synchrotron radiation onto a spinning semi‐circular resonant absorber. Here, the physical interpretation of these methodologies, and their alleged performance improvement, is analyzed in the light of our own team's past experience based instead on the traditional laboratory setup. It is shown that a number of fundamental shortcomings in the approach reported in the literature deprives it of any practical significance with respect to the improvement of the technique of Mössbauer rotor experiments with a synchrotron source. It is concluded that, at present, only Mössbauer experiments relying on an ordinary compact source of resonant radiation and a resonant absorber both fixed on the rotor promise to provide crucial information with respect to the physical origin of the observed energy shift between emitted and absorbed resonant radiation in a rotating system.
The performance of various Mössbauer experiments in a rotating system with synchrotron radiation and with an ordinary source of resonant γ‐quanta is analyzed.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S1600577520013703</identifier><identifier>PMID: 33399555</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Absorbers ; Experiments ; Mössbauer effect ; Particle beams ; resonant sources ; rotating system ; Rotation ; Rotors ; Synchrotron radiation ; Synchrotrons</subject><ispartof>Journal of synchrotron radiation, 2021-01, Vol.28 (1), p.78-85</ispartof><rights>International Union of Crystallography, 2021</rights><rights>Copyright Wiley Subscription Services, Inc. Jan 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4225-6ddbde9c567c50ed1f1c869c68a2abfbd27683d8bc857bc3c5eee72f5fe4f3763</citedby><cites>FETCH-LOGICAL-c4225-6ddbde9c567c50ed1f1c869c68a2abfbd27683d8bc857bc3c5eee72f5fe4f3763</cites><orcidid>0000-0001-9002-3326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600577520013703$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600577520013703$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600577520013703$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33399555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kholmetskii, A. L.</creatorcontrib><creatorcontrib>Yarman, T.</creatorcontrib><creatorcontrib>Yarman, O.</creatorcontrib><creatorcontrib>Arik, M.</creatorcontrib><title>Comparison of traditional and synchrotron beam methodologies in Mössbauer experiments in a rotating system</title><title>Journal of synchrotron radiation</title><addtitle>J Synchrotron Radiat</addtitle><description>Recent Mössbauer experiments in a rotating system reported by others in the literature have involved the application of synchrotron radiation onto a spinning semi‐circular resonant absorber. Here, the physical interpretation of these methodologies, and their alleged performance improvement, is analyzed in the light of our own team's past experience based instead on the traditional laboratory setup. It is shown that a number of fundamental shortcomings in the approach reported in the literature deprives it of any practical significance with respect to the improvement of the technique of Mössbauer rotor experiments with a synchrotron source. It is concluded that, at present, only Mössbauer experiments relying on an ordinary compact source of resonant radiation and a resonant absorber both fixed on the rotor promise to provide crucial information with respect to the physical origin of the observed energy shift between emitted and absorbed resonant radiation in a rotating system.
The performance of various Mössbauer experiments in a rotating system with synchrotron radiation and with an ordinary source of resonant γ‐quanta is analyzed.</description><subject>Absorbers</subject><subject>Experiments</subject><subject>Mössbauer effect</subject><subject>Particle beams</subject><subject>resonant sources</subject><subject>rotating system</subject><subject>Rotation</subject><subject>Rotors</subject><subject>Synchrotron radiation</subject><subject>Synchrotrons</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkctKBDEQRYMovj_AjQTcuBnNY5J0L2XwiSL4AldNOqnWaHdnTLrR-TF_wB8z46iILlxVUXXuhVuF0AYlO5QStXtJJSFCKcEIoVwRPoeWp6PBdDb_o19CKzE-JEgqxhfREuc8z4UQy-hx5JuxDi76FvsKd0Fb1znf6hrr1uI4ac198F1I6xJ0gxvo7r31tb9zELFr8dnba4yl7iFgeBlDcA203cdG4yTUnWvvkk3soFlDC5WuI6x_1lV0fbB_NToanJ4fHo_2TgdmyJgYSGtLC7kRUhlBwNKKmkzmRmaa6bIqLVMy4zYrTSZUabgRAKBYJSoYVlxJvoq2Z77j4J96iF3RuGigrnULvo8FGyrBc6myKbr1C33wfUjpZxQldKhoouiMMsHHGKAqximnDpOCkmL6ieLPJ5Jm89O5Lxuw34qv0ycgnwHProbJ_47FyeUtu7gRlAv-DuTxlqM</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Kholmetskii, A. L.</creator><creator>Yarman, T.</creator><creator>Yarman, O.</creator><creator>Arik, M.</creator><general>International Union of Crystallography</general><general>John Wiley & Sons, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9002-3326</orcidid></search><sort><creationdate>202101</creationdate><title>Comparison of traditional and synchrotron beam methodologies in Mössbauer experiments in a rotating system</title><author>Kholmetskii, A. L. ; Yarman, T. ; Yarman, O. ; Arik, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4225-6ddbde9c567c50ed1f1c869c68a2abfbd27683d8bc857bc3c5eee72f5fe4f3763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorbers</topic><topic>Experiments</topic><topic>Mössbauer effect</topic><topic>Particle beams</topic><topic>resonant sources</topic><topic>rotating system</topic><topic>Rotation</topic><topic>Rotors</topic><topic>Synchrotron radiation</topic><topic>Synchrotrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kholmetskii, A. L.</creatorcontrib><creatorcontrib>Yarman, T.</creatorcontrib><creatorcontrib>Yarman, O.</creatorcontrib><creatorcontrib>Arik, M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kholmetskii, A. L.</au><au>Yarman, T.</au><au>Yarman, O.</au><au>Arik, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of traditional and synchrotron beam methodologies in Mössbauer experiments in a rotating system</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J Synchrotron Radiat</addtitle><date>2021-01</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><spage>78</spage><epage>85</epage><pages>78-85</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>Recent Mössbauer experiments in a rotating system reported by others in the literature have involved the application of synchrotron radiation onto a spinning semi‐circular resonant absorber. Here, the physical interpretation of these methodologies, and their alleged performance improvement, is analyzed in the light of our own team's past experience based instead on the traditional laboratory setup. It is shown that a number of fundamental shortcomings in the approach reported in the literature deprives it of any practical significance with respect to the improvement of the technique of Mössbauer rotor experiments with a synchrotron source. It is concluded that, at present, only Mössbauer experiments relying on an ordinary compact source of resonant radiation and a resonant absorber both fixed on the rotor promise to provide crucial information with respect to the physical origin of the observed energy shift between emitted and absorbed resonant radiation in a rotating system.
The performance of various Mössbauer experiments in a rotating system with synchrotron radiation and with an ordinary source of resonant γ‐quanta is analyzed.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>33399555</pmid><doi>10.1107/S1600577520013703</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9002-3326</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1600-5775 |
ispartof | Journal of synchrotron radiation, 2021-01, Vol.28 (1), p.78-85 |
issn | 1600-5775 0909-0495 1600-5775 |
language | eng |
recordid | cdi_proquest_miscellaneous_2475396786 |
source | Wiley Online Library (Open Access Collection) |
subjects | Absorbers Experiments Mössbauer effect Particle beams resonant sources rotating system Rotation Rotors Synchrotron radiation Synchrotrons |
title | Comparison of traditional and synchrotron beam methodologies in Mössbauer experiments in a rotating system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20traditional%20and%20synchrotron%20beam%20methodologies%20in%20M%C3%B6ssbauer%20experiments%20in%20a%20rotating%20system&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Kholmetskii,%20A.%20L.&rft.date=2021-01&rft.volume=28&rft.issue=1&rft.spage=78&rft.epage=85&rft.pages=78-85&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S1600577520013703&rft_dat=%3Cproquest_24P%3E2475101471%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475101471&rft_id=info:pmid/33399555&rfr_iscdi=true |