Spiral tetrahedral packing in the β‐Mn crystal as symmetry realization of the 8D E8 lattice

Experimental values of atomic positions in the β‐Mn crystal permit one to distinguish among them a fragment of the helix containing 15 interpenetrating distorted icosahedra, 90 vertices and 225 tetrahedra. This fragment corresponds to the closed helix of 15 icosahedra in the 4D {3, 3, 5} polytope. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section A, Foundations and advances Foundations and advances, 2021-01, Vol.77 (1), p.7-18
Hauptverfasser: Talis, Alexander, Everstov, Ayal, Kraposhin, Valentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 7
container_title Acta crystallographica. Section A, Foundations and advances
container_volume 77
creator Talis, Alexander
Everstov, Ayal
Kraposhin, Valentin
description Experimental values of atomic positions in the β‐Mn crystal permit one to distinguish among them a fragment of the helix containing 15 interpenetrating distorted icosahedra, 90 vertices and 225 tetrahedra. This fragment corresponds to the closed helix of 15 icosahedra in the 4D {3, 3, 5} polytope. The primitive cubic lattice of these icosahedral helices envelopes not only all atoms of β‐Mn, but also all tetrahedra belonging to the tiling of the β‐Mn structure. The 2D projection of all atomic positions in the β‐Mn unit cells shows that they are situated (by neglecting small differences) on three circumferences containing 2D projections of 90 vertices of the {3, 3, 5} polytope on the same plane. Non‐crystallographic symmetry of the β‐Mn crystal is defined by mapping the closed icosahedral helix of the {3, 3, 5} polytope into 3D Euclidean space E3. This interpretation must be correlated also with the known previous determination of non‐crystallographic symmetry of the β‐Mn crystal by mapping into the 3D E3 space system of icosahedra from the 6D cubic B6 lattice. The recently proposed determination of non‐crystallographic symmetry of the β‐Mn crystal actually uses the symmetries of the 8D E8 lattice, in which both the 4D {3, 3, 5} polytope and cubic 6D B6 lattice can be inserted. The 2D projection of all atomic positions in the β‐Mn unit cells shows that they are situated on three circumferences containing 2D projections of 90 vertices of the {3, 3, 5} polytope on the same plane. The exhaustive description of the non‐crystallographic symmetry of the β‐Mn crystal has been achieved by using the 8D E8 lattice in which both the 4D {3, 3, 5} polytope and cubic 6D B6 lattice can be inserted.
doi_str_mv 10.1107/S2053273320012978
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475396452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475396452</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1812-731bb4e6574ceff6e6a157056b02aa8bcca3d65a87780b014e249d696e6b19033</originalsourceid><addsrcrecordid>eNpl0L1OwzAQAGALgURV-gBsllhYAmc7jp2xKqUgFTGUDixETupQl_xhu0Jh4hF4Fh6Eh-BJSIABwXSnu-9Op0PokMAJISBOFxQ4o4IxCkBoLOQOGvSloK_t_sr30ci5DXSKAKcRDNDdojFWFdhrb9Var_q8UdmDqe6xqbBfa_z-9vHyelXhzLbOd23lsGvLshtosdWqMM_Km7rCdf7F5RmeSlwo702mD9BergqnRz9xiJbn05vJRTC_nl1OxvOgIZLQQDCSpqGOuAgzneeRjhThAniUAlVKplmm2CriSgohIQUSahrGqyjuYEpiYGyIjr_3NrZ-3Grnk9K4TBeFqnS9dQkNBWdxFHLa0aM_dFNvbdVd1ysJIQHZq_hbPZlCt0ljTalsmxBI-o8n_z6ejG_HdDnjAJR9Ai6UdUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478041082</pqid></control><display><type>article</type><title>Spiral tetrahedral packing in the β‐Mn crystal as symmetry realization of the 8D E8 lattice</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Talis, Alexander ; Everstov, Ayal ; Kraposhin, Valentin</creator><creatorcontrib>Talis, Alexander ; Everstov, Ayal ; Kraposhin, Valentin</creatorcontrib><description>Experimental values of atomic positions in the β‐Mn crystal permit one to distinguish among them a fragment of the helix containing 15 interpenetrating distorted icosahedra, 90 vertices and 225 tetrahedra. This fragment corresponds to the closed helix of 15 icosahedra in the 4D {3, 3, 5} polytope. The primitive cubic lattice of these icosahedral helices envelopes not only all atoms of β‐Mn, but also all tetrahedra belonging to the tiling of the β‐Mn structure. The 2D projection of all atomic positions in the β‐Mn unit cells shows that they are situated (by neglecting small differences) on three circumferences containing 2D projections of 90 vertices of the {3, 3, 5} polytope on the same plane. Non‐crystallographic symmetry of the β‐Mn crystal is defined by mapping the closed icosahedral helix of the {3, 3, 5} polytope into 3D Euclidean space E3. This interpretation must be correlated also with the known previous determination of non‐crystallographic symmetry of the β‐Mn crystal by mapping into the 3D E3 space system of icosahedra from the 6D cubic B6 lattice. The recently proposed determination of non‐crystallographic symmetry of the β‐Mn crystal actually uses the symmetries of the 8D E8 lattice, in which both the 4D {3, 3, 5} polytope and cubic 6D B6 lattice can be inserted. The 2D projection of all atomic positions in the β‐Mn unit cells shows that they are situated on three circumferences containing 2D projections of 90 vertices of the {3, 3, 5} polytope on the same plane. The exhaustive description of the non‐crystallographic symmetry of the β‐Mn crystal has been achieved by using the 8D E8 lattice in which both the 4D {3, 3, 5} polytope and cubic 6D B6 lattice can be inserted.</description><identifier>ISSN: 2053-2733</identifier><identifier>ISSN: 0108-7673</identifier><identifier>EISSN: 2053-2733</identifier><identifier>DOI: 10.1107/S2053273320012978</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>4D {3, 3, 5} polytope ; 8D E8 lattice ; Apexes ; Crystal lattices ; Crystallography ; Cubic lattice ; Euclidean geometry ; Euclidean space ; Helices ; Icosahedrons ; Mapping ; non‐crystallographic symmetry ; Polytopes ; Symmetry ; Tetrahedra ; tetrahedral tiling ; Tiling ; β‐Mn crystal</subject><ispartof>Acta crystallographica. Section A, Foundations and advances, 2021-01, Vol.77 (1), p.7-18</ispartof><rights>International Union of Crystallography, 2021</rights><rights>Copyright Wiley Subscription Services, Inc. Jan 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS2053273320012978$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS2053273320012978$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Talis, Alexander</creatorcontrib><creatorcontrib>Everstov, Ayal</creatorcontrib><creatorcontrib>Kraposhin, Valentin</creatorcontrib><title>Spiral tetrahedral packing in the β‐Mn crystal as symmetry realization of the 8D E8 lattice</title><title>Acta crystallographica. Section A, Foundations and advances</title><description>Experimental values of atomic positions in the β‐Mn crystal permit one to distinguish among them a fragment of the helix containing 15 interpenetrating distorted icosahedra, 90 vertices and 225 tetrahedra. This fragment corresponds to the closed helix of 15 icosahedra in the 4D {3, 3, 5} polytope. The primitive cubic lattice of these icosahedral helices envelopes not only all atoms of β‐Mn, but also all tetrahedra belonging to the tiling of the β‐Mn structure. The 2D projection of all atomic positions in the β‐Mn unit cells shows that they are situated (by neglecting small differences) on three circumferences containing 2D projections of 90 vertices of the {3, 3, 5} polytope on the same plane. Non‐crystallographic symmetry of the β‐Mn crystal is defined by mapping the closed icosahedral helix of the {3, 3, 5} polytope into 3D Euclidean space E3. This interpretation must be correlated also with the known previous determination of non‐crystallographic symmetry of the β‐Mn crystal by mapping into the 3D E3 space system of icosahedra from the 6D cubic B6 lattice. The recently proposed determination of non‐crystallographic symmetry of the β‐Mn crystal actually uses the symmetries of the 8D E8 lattice, in which both the 4D {3, 3, 5} polytope and cubic 6D B6 lattice can be inserted. The 2D projection of all atomic positions in the β‐Mn unit cells shows that they are situated on three circumferences containing 2D projections of 90 vertices of the {3, 3, 5} polytope on the same plane. The exhaustive description of the non‐crystallographic symmetry of the β‐Mn crystal has been achieved by using the 8D E8 lattice in which both the 4D {3, 3, 5} polytope and cubic 6D B6 lattice can be inserted.</description><subject>4D {3, 3, 5} polytope</subject><subject>8D E8 lattice</subject><subject>Apexes</subject><subject>Crystal lattices</subject><subject>Crystallography</subject><subject>Cubic lattice</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Helices</subject><subject>Icosahedrons</subject><subject>Mapping</subject><subject>non‐crystallographic symmetry</subject><subject>Polytopes</subject><subject>Symmetry</subject><subject>Tetrahedra</subject><subject>tetrahedral tiling</subject><subject>Tiling</subject><subject>β‐Mn crystal</subject><issn>2053-2733</issn><issn>0108-7673</issn><issn>2053-2733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpl0L1OwzAQAGALgURV-gBsllhYAmc7jp2xKqUgFTGUDixETupQl_xhu0Jh4hF4Fh6Eh-BJSIABwXSnu-9Op0PokMAJISBOFxQ4o4IxCkBoLOQOGvSloK_t_sr30ci5DXSKAKcRDNDdojFWFdhrb9Var_q8UdmDqe6xqbBfa_z-9vHyelXhzLbOd23lsGvLshtosdWqMM_Km7rCdf7F5RmeSlwo702mD9BergqnRz9xiJbn05vJRTC_nl1OxvOgIZLQQDCSpqGOuAgzneeRjhThAniUAlVKplmm2CriSgohIQUSahrGqyjuYEpiYGyIjr_3NrZ-3Grnk9K4TBeFqnS9dQkNBWdxFHLa0aM_dFNvbdVd1ysJIQHZq_hbPZlCt0ljTalsmxBI-o8n_z6ejG_HdDnjAJR9Ai6UdUk</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Talis, Alexander</creator><creator>Everstov, Ayal</creator><creator>Kraposhin, Valentin</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>202101</creationdate><title>Spiral tetrahedral packing in the β‐Mn crystal as symmetry realization of the 8D E8 lattice</title><author>Talis, Alexander ; Everstov, Ayal ; Kraposhin, Valentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1812-731bb4e6574ceff6e6a157056b02aa8bcca3d65a87780b014e249d696e6b19033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>4D {3, 3, 5} polytope</topic><topic>8D E8 lattice</topic><topic>Apexes</topic><topic>Crystal lattices</topic><topic>Crystallography</topic><topic>Cubic lattice</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Helices</topic><topic>Icosahedrons</topic><topic>Mapping</topic><topic>non‐crystallographic symmetry</topic><topic>Polytopes</topic><topic>Symmetry</topic><topic>Tetrahedra</topic><topic>tetrahedral tiling</topic><topic>Tiling</topic><topic>β‐Mn crystal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talis, Alexander</creatorcontrib><creatorcontrib>Everstov, Ayal</creatorcontrib><creatorcontrib>Kraposhin, Valentin</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section A, Foundations and advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talis, Alexander</au><au>Everstov, Ayal</au><au>Kraposhin, Valentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spiral tetrahedral packing in the β‐Mn crystal as symmetry realization of the 8D E8 lattice</atitle><jtitle>Acta crystallographica. Section A, Foundations and advances</jtitle><date>2021-01</date><risdate>2021</risdate><volume>77</volume><issue>1</issue><spage>7</spage><epage>18</epage><pages>7-18</pages><issn>2053-2733</issn><issn>0108-7673</issn><eissn>2053-2733</eissn><abstract>Experimental values of atomic positions in the β‐Mn crystal permit one to distinguish among them a fragment of the helix containing 15 interpenetrating distorted icosahedra, 90 vertices and 225 tetrahedra. This fragment corresponds to the closed helix of 15 icosahedra in the 4D {3, 3, 5} polytope. The primitive cubic lattice of these icosahedral helices envelopes not only all atoms of β‐Mn, but also all tetrahedra belonging to the tiling of the β‐Mn structure. The 2D projection of all atomic positions in the β‐Mn unit cells shows that they are situated (by neglecting small differences) on three circumferences containing 2D projections of 90 vertices of the {3, 3, 5} polytope on the same plane. Non‐crystallographic symmetry of the β‐Mn crystal is defined by mapping the closed icosahedral helix of the {3, 3, 5} polytope into 3D Euclidean space E3. This interpretation must be correlated also with the known previous determination of non‐crystallographic symmetry of the β‐Mn crystal by mapping into the 3D E3 space system of icosahedra from the 6D cubic B6 lattice. The recently proposed determination of non‐crystallographic symmetry of the β‐Mn crystal actually uses the symmetries of the 8D E8 lattice, in which both the 4D {3, 3, 5} polytope and cubic 6D B6 lattice can be inserted. The 2D projection of all atomic positions in the β‐Mn unit cells shows that they are situated on three circumferences containing 2D projections of 90 vertices of the {3, 3, 5} polytope on the same plane. The exhaustive description of the non‐crystallographic symmetry of the β‐Mn crystal has been achieved by using the 8D E8 lattice in which both the 4D {3, 3, 5} polytope and cubic 6D B6 lattice can be inserted.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S2053273320012978</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2053-2733
ispartof Acta crystallographica. Section A, Foundations and advances, 2021-01, Vol.77 (1), p.7-18
issn 2053-2733
0108-7673
2053-2733
language eng
recordid cdi_proquest_miscellaneous_2475396452
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects 4D {3, 3, 5} polytope
8D E8 lattice
Apexes
Crystal lattices
Crystallography
Cubic lattice
Euclidean geometry
Euclidean space
Helices
Icosahedrons
Mapping
non‐crystallographic symmetry
Polytopes
Symmetry
Tetrahedra
tetrahedral tiling
Tiling
β‐Mn crystal
title Spiral tetrahedral packing in the β‐Mn crystal as symmetry realization of the 8D E8 lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spiral%20tetrahedral%20packing%20in%20the%20%CE%B2%E2%80%90Mn%20crystal%20as%20symmetry%20realization%20of%20the%208D%20E8%20lattice&rft.jtitle=Acta%20crystallographica.%20Section%20A,%20Foundations%20and%20advances&rft.au=Talis,%20Alexander&rft.date=2021-01&rft.volume=77&rft.issue=1&rft.spage=7&rft.epage=18&rft.pages=7-18&rft.issn=2053-2733&rft.eissn=2053-2733&rft_id=info:doi/10.1107/S2053273320012978&rft_dat=%3Cproquest_wiley%3E2475396452%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478041082&rft_id=info:pmid/&rfr_iscdi=true