HnRNPA2B1 promotes the proliferation of breast cancer MCF‐7 cells via the STAT3 pathway

HnRNPA2/B1 is highly expressed in many tumors. However, the role of hnRNPA2/B1 in breast cancer is not clear. In this study, we found the proliferation rate was decreased after knockout of hnRNPA2/B1 by CRISPR‐CAS9 in MCF‐7 cells, as demonstrated by the reduced expression of CDK4 and p‐AKT, and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular biochemistry 2021-04, Vol.122 (3-4), p.472-484
Hauptverfasser: Gao, Li‐Bin, Zhu, Xin‐Le, Shi, Jing‐Xian, Yang, Ling, Xu, Zhen‐Qiang, Shi, Song‐Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:HnRNPA2/B1 is highly expressed in many tumors. However, the role of hnRNPA2/B1 in breast cancer is not clear. In this study, we found the proliferation rate was decreased after knockout of hnRNPA2/B1 by CRISPR‐CAS9 in MCF‐7 cells, as demonstrated by the reduced expression of CDK4 and p‐AKT, and the increased expression of P27. Besides this, the western blot results showed that knockout of hnRNPA2/B1 increased the rate of apoptosis and declined autophagy. By in vivo assay, we found that knockout of hnRNPA2/B1 suppressed tumor growth in a xenograft mouse model. Immunohistochemical staining results confirmed knockout of hnRNPA2/B1 impaired tumor angiogenesis, as illustrated by downregulated expression of VEGF‐A. Besides this, interacting proteins with hnRNPA2/B1 were identified by mass spectrometry and the PPI network was constructed. GO analysis suggests that the Interacting proteins are mainly enriched in the Wnt signaling pathway, tumor necrosis factor‐mediated signaling pathway, translation, and so on. We then identified hnRNPA2/B1 interacted with signal transducer and activator of transcription 3 (STAT3), as supported by the colocalization of hnRNPA2/B1 and STAT3. Meanwhile, knockout of hnRNPA2/B1 inhibited the phosphorylation of STAT3. Collectively, our results demonstrate that hnRNPA2/B1 promotes tumor cell growth in vitro and in vivo by activating the STAT3 pathway, regulating apoptosis and autophagy. hnRNPA2/B1 promotes tumor cell growth in vitro and in vivo by activating the STAT3 pathway. Targeting hnRNPA2B1 or STAT3 pathway may be a promising pathway to treat breast cancer.
ISSN:0730-2312
1097-4644
DOI:10.1002/jcb.29875