Optimization of theoretical maximal quantity of cells to immobilize on solid supports in the rational design of immobilized derivatives strategy

Current worldwide challenges are to increase the food production and decrease the environmental contamination by industrial emissions. For this, bacteria can produce plant growth promoter phytohormones and mediate the bioremediation of sewage by heavy metals removal. We developed a Rational Design o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2021-01, Vol.37 (1), p.9-9, Article 9
Hauptverfasser: Castillo-Alfonso, Freddy, Rojas, Marcia M., Salgado-Bernal, Irina, Carballo, María E., Olivares-Hernández, Roberto, González-Bacerio, Jorge, Guisán, José M., del Monte-Martínez, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 9
container_title World journal of microbiology & biotechnology
container_volume 37
creator Castillo-Alfonso, Freddy
Rojas, Marcia M.
Salgado-Bernal, Irina
Carballo, María E.
Olivares-Hernández, Roberto
González-Bacerio, Jorge
Guisán, José M.
del Monte-Martínez, Alberto
description Current worldwide challenges are to increase the food production and decrease the environmental contamination by industrial emissions. For this, bacteria can produce plant growth promoter phytohormones and mediate the bioremediation of sewage by heavy metals removal. We developed a Rational Design of Immobilized Derivatives (RDID) strategy, applicable for protein, spore and cell immobilization and implemented in the RDID 1.0 software. In this work, we propose new algorithms to optimize the theoretical maximal quantity of cells to immobilize ( tMQ Cell ) on solid supports, implemented in the RDID Cell software. The main modifications to the preexisting algorithms are related to the sphere packing theory and exclusive immobilization on the support surface. We experimentally validated the new tMQ Cell parameter by electrostatic immobilization of ten microbial strains on AMBERJET ® 4200 Cl − porous solid support. All predicted tMQ Cell match the practical maximal quantity of cells to immobilize with a 10% confidence. The values predicted by the RDID Cell software are more accurate than the values predicted by the RDID 1.0 software. 3-indolacetic acid (IAA) production by one bacterial immobilized derivative was higher (~ 2.6 μg IAA-like indoles/10 8 cells) than that of the cell suspension (1.5 μg IAA-like indoles/10 8 cells), and higher than the tryptophan amount added as indole precursor. Another bacterial immobilized derivative was more active (22 μg Cr(III)/10 8 cells) than the resuspended cells (14.5 μg Cr(III)/10 8 cells) in bioconversion of Cr(VI) to Cr(III). Optimized RDID strategy can be used to synthesize bacterial immobilized derivatives with useful biotechnological applications. Graphic Abstract
doi_str_mv 10.1007/s11274-020-02972-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2475090400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475090400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-3315d4452a6c6f6a77953e06d65c652479ead6434df5cf53a4a3d88335252f563</originalsourceid><addsrcrecordid>eNp9kcFuFSEUhonR2NvqC7gwJG7cjAIHmMvSNNWaNOlG14QOzJVmZphymMbbp_CRZe6tNnHhgpzA-f4fDj8hbzj7wBlrPyLnopUNE6wu04pGPyMbrlpoWN09JxtmlGnAGDghp4i3jFWZgZfkBACM2Irthvy6nksc44MrMU009bT8CCmHEjs30NH9jGOtd4ubSiz7td-FYUBaEo3jmG7iEB8CrUpMQ_QUl3lOuSCN02pE88G2OviAcXfwf5L5eprjfUXuA1IsFQ67_SvyoncDhteP9Yx8_3zx7fyyubr-8vX801XTSS5KA8CVl1IJpzvda9e2RkFg2mvVaSVka4LzWoL0vep6BU468NstgBJK9ErDGXl_9J1zulsCFjtGXIdzU0gL2mqhmGGSsYq--we9TUuuYx2oykmuVkocqS4nxBx6O-f6e3lvObNrXvaYl6152UNedn3F20fr5WYM_q_kT0AVgCOAtTXtQn66-z-2vwHwu6K2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474754150</pqid></control><display><type>article</type><title>Optimization of theoretical maximal quantity of cells to immobilize on solid supports in the rational design of immobilized derivatives strategy</title><source>Springer Nature - Complete Springer Journals</source><creator>Castillo-Alfonso, Freddy ; Rojas, Marcia M. ; Salgado-Bernal, Irina ; Carballo, María E. ; Olivares-Hernández, Roberto ; González-Bacerio, Jorge ; Guisán, José M. ; del Monte-Martínez, Alberto</creator><creatorcontrib>Castillo-Alfonso, Freddy ; Rojas, Marcia M. ; Salgado-Bernal, Irina ; Carballo, María E. ; Olivares-Hernández, Roberto ; González-Bacerio, Jorge ; Guisán, José M. ; del Monte-Martínez, Alberto</creatorcontrib><description>Current worldwide challenges are to increase the food production and decrease the environmental contamination by industrial emissions. For this, bacteria can produce plant growth promoter phytohormones and mediate the bioremediation of sewage by heavy metals removal. We developed a Rational Design of Immobilized Derivatives (RDID) strategy, applicable for protein, spore and cell immobilization and implemented in the RDID 1.0 software. In this work, we propose new algorithms to optimize the theoretical maximal quantity of cells to immobilize ( tMQ Cell ) on solid supports, implemented in the RDID Cell software. The main modifications to the preexisting algorithms are related to the sphere packing theory and exclusive immobilization on the support surface. We experimentally validated the new tMQ Cell parameter by electrostatic immobilization of ten microbial strains on AMBERJET ® 4200 Cl − porous solid support. All predicted tMQ Cell match the practical maximal quantity of cells to immobilize with a 10% confidence. The values predicted by the RDID Cell software are more accurate than the values predicted by the RDID 1.0 software. 3-indolacetic acid (IAA) production by one bacterial immobilized derivative was higher (~ 2.6 μg IAA-like indoles/10 8 cells) than that of the cell suspension (1.5 μg IAA-like indoles/10 8 cells), and higher than the tryptophan amount added as indole precursor. Another bacterial immobilized derivative was more active (22 μg Cr(III)/10 8 cells) than the resuspended cells (14.5 μg Cr(III)/10 8 cells) in bioconversion of Cr(VI) to Cr(III). Optimized RDID strategy can be used to synthesize bacterial immobilized derivatives with useful biotechnological applications. Graphic Abstract</description><identifier>ISSN: 0959-3993</identifier><identifier>EISSN: 1573-0972</identifier><identifier>DOI: 10.1007/s11274-020-02972-6</identifier><identifier>PMID: 33392828</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Applied Microbiology ; Bacteria ; Biochemistry ; Bioconversion ; Biomedical and Life Sciences ; Bioremediation ; Biotechnology ; Chromium ; Computer programs ; Derivatives ; Environmental Engineering/Biotechnology ; Food contamination ; Food production ; Heavy metals ; Immobilization ; Indoleacetic acid ; Indoles ; Industrial emissions ; Industrial pollution ; Life Sciences ; Microbiology ; Microorganisms ; Optimization ; Original Paper ; Plant growth ; Plant growth promoters ; Plant hormones ; Sewage ; Software ; Strategy ; Trivalent chromium ; Tryptophan</subject><ispartof>World journal of microbiology &amp; biotechnology, 2021-01, Vol.37 (1), p.9-9, Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-3315d4452a6c6f6a77953e06d65c652479ead6434df5cf53a4a3d88335252f563</citedby><cites>FETCH-LOGICAL-c412t-3315d4452a6c6f6a77953e06d65c652479ead6434df5cf53a4a3d88335252f563</cites><orcidid>0000-0003-2671-9323 ; 0000-0003-1627-6522 ; 0000-0002-7155-9165 ; 0000-0003-4958-1873 ; 0000-0002-7175-8500 ; 0000-0001-9608-5448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11274-020-02972-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11274-020-02972-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33392828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castillo-Alfonso, Freddy</creatorcontrib><creatorcontrib>Rojas, Marcia M.</creatorcontrib><creatorcontrib>Salgado-Bernal, Irina</creatorcontrib><creatorcontrib>Carballo, María E.</creatorcontrib><creatorcontrib>Olivares-Hernández, Roberto</creatorcontrib><creatorcontrib>González-Bacerio, Jorge</creatorcontrib><creatorcontrib>Guisán, José M.</creatorcontrib><creatorcontrib>del Monte-Martínez, Alberto</creatorcontrib><title>Optimization of theoretical maximal quantity of cells to immobilize on solid supports in the rational design of immobilized derivatives strategy</title><title>World journal of microbiology &amp; biotechnology</title><addtitle>World J Microbiol Biotechnol</addtitle><addtitle>World J Microbiol Biotechnol</addtitle><description>Current worldwide challenges are to increase the food production and decrease the environmental contamination by industrial emissions. For this, bacteria can produce plant growth promoter phytohormones and mediate the bioremediation of sewage by heavy metals removal. We developed a Rational Design of Immobilized Derivatives (RDID) strategy, applicable for protein, spore and cell immobilization and implemented in the RDID 1.0 software. In this work, we propose new algorithms to optimize the theoretical maximal quantity of cells to immobilize ( tMQ Cell ) on solid supports, implemented in the RDID Cell software. The main modifications to the preexisting algorithms are related to the sphere packing theory and exclusive immobilization on the support surface. We experimentally validated the new tMQ Cell parameter by electrostatic immobilization of ten microbial strains on AMBERJET ® 4200 Cl − porous solid support. All predicted tMQ Cell match the practical maximal quantity of cells to immobilize with a 10% confidence. The values predicted by the RDID Cell software are more accurate than the values predicted by the RDID 1.0 software. 3-indolacetic acid (IAA) production by one bacterial immobilized derivative was higher (~ 2.6 μg IAA-like indoles/10 8 cells) than that of the cell suspension (1.5 μg IAA-like indoles/10 8 cells), and higher than the tryptophan amount added as indole precursor. Another bacterial immobilized derivative was more active (22 μg Cr(III)/10 8 cells) than the resuspended cells (14.5 μg Cr(III)/10 8 cells) in bioconversion of Cr(VI) to Cr(III). Optimized RDID strategy can be used to synthesize bacterial immobilized derivatives with useful biotechnological applications. Graphic Abstract</description><subject>Algorithms</subject><subject>Applied Microbiology</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Bioconversion</subject><subject>Biomedical and Life Sciences</subject><subject>Bioremediation</subject><subject>Biotechnology</subject><subject>Chromium</subject><subject>Computer programs</subject><subject>Derivatives</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Food contamination</subject><subject>Food production</subject><subject>Heavy metals</subject><subject>Immobilization</subject><subject>Indoleacetic acid</subject><subject>Indoles</subject><subject>Industrial emissions</subject><subject>Industrial pollution</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Plant growth</subject><subject>Plant growth promoters</subject><subject>Plant hormones</subject><subject>Sewage</subject><subject>Software</subject><subject>Strategy</subject><subject>Trivalent chromium</subject><subject>Tryptophan</subject><issn>0959-3993</issn><issn>1573-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kcFuFSEUhonR2NvqC7gwJG7cjAIHmMvSNNWaNOlG14QOzJVmZphymMbbp_CRZe6tNnHhgpzA-f4fDj8hbzj7wBlrPyLnopUNE6wu04pGPyMbrlpoWN09JxtmlGnAGDghp4i3jFWZgZfkBACM2Irthvy6nksc44MrMU009bT8CCmHEjs30NH9jGOtd4ubSiz7td-FYUBaEo3jmG7iEB8CrUpMQ_QUl3lOuSCN02pE88G2OviAcXfwf5L5eprjfUXuA1IsFQ67_SvyoncDhteP9Yx8_3zx7fyyubr-8vX801XTSS5KA8CVl1IJpzvda9e2RkFg2mvVaSVka4LzWoL0vep6BU468NstgBJK9ErDGXl_9J1zulsCFjtGXIdzU0gL2mqhmGGSsYq--we9TUuuYx2oykmuVkocqS4nxBx6O-f6e3lvObNrXvaYl6152UNedn3F20fr5WYM_q_kT0AVgCOAtTXtQn66-z-2vwHwu6K2</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Castillo-Alfonso, Freddy</creator><creator>Rojas, Marcia M.</creator><creator>Salgado-Bernal, Irina</creator><creator>Carballo, María E.</creator><creator>Olivares-Hernández, Roberto</creator><creator>González-Bacerio, Jorge</creator><creator>Guisán, José M.</creator><creator>del Monte-Martínez, Alberto</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U9</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2671-9323</orcidid><orcidid>https://orcid.org/0000-0003-1627-6522</orcidid><orcidid>https://orcid.org/0000-0002-7155-9165</orcidid><orcidid>https://orcid.org/0000-0003-4958-1873</orcidid><orcidid>https://orcid.org/0000-0002-7175-8500</orcidid><orcidid>https://orcid.org/0000-0001-9608-5448</orcidid></search><sort><creationdate>20210101</creationdate><title>Optimization of theoretical maximal quantity of cells to immobilize on solid supports in the rational design of immobilized derivatives strategy</title><author>Castillo-Alfonso, Freddy ; Rojas, Marcia M. ; Salgado-Bernal, Irina ; Carballo, María E. ; Olivares-Hernández, Roberto ; González-Bacerio, Jorge ; Guisán, José M. ; del Monte-Martínez, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-3315d4452a6c6f6a77953e06d65c652479ead6434df5cf53a4a3d88335252f563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applied Microbiology</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Bioconversion</topic><topic>Biomedical and Life Sciences</topic><topic>Bioremediation</topic><topic>Biotechnology</topic><topic>Chromium</topic><topic>Computer programs</topic><topic>Derivatives</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Food contamination</topic><topic>Food production</topic><topic>Heavy metals</topic><topic>Immobilization</topic><topic>Indoleacetic acid</topic><topic>Indoles</topic><topic>Industrial emissions</topic><topic>Industrial pollution</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Plant growth</topic><topic>Plant growth promoters</topic><topic>Plant hormones</topic><topic>Sewage</topic><topic>Software</topic><topic>Strategy</topic><topic>Trivalent chromium</topic><topic>Tryptophan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo-Alfonso, Freddy</creatorcontrib><creatorcontrib>Rojas, Marcia M.</creatorcontrib><creatorcontrib>Salgado-Bernal, Irina</creatorcontrib><creatorcontrib>Carballo, María E.</creatorcontrib><creatorcontrib>Olivares-Hernández, Roberto</creatorcontrib><creatorcontrib>González-Bacerio, Jorge</creatorcontrib><creatorcontrib>Guisán, José M.</creatorcontrib><creatorcontrib>del Monte-Martínez, Alberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>World journal of microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo-Alfonso, Freddy</au><au>Rojas, Marcia M.</au><au>Salgado-Bernal, Irina</au><au>Carballo, María E.</au><au>Olivares-Hernández, Roberto</au><au>González-Bacerio, Jorge</au><au>Guisán, José M.</au><au>del Monte-Martínez, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of theoretical maximal quantity of cells to immobilize on solid supports in the rational design of immobilized derivatives strategy</atitle><jtitle>World journal of microbiology &amp; biotechnology</jtitle><stitle>World J Microbiol Biotechnol</stitle><addtitle>World J Microbiol Biotechnol</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>37</volume><issue>1</issue><spage>9</spage><epage>9</epage><pages>9-9</pages><artnum>9</artnum><issn>0959-3993</issn><eissn>1573-0972</eissn><abstract>Current worldwide challenges are to increase the food production and decrease the environmental contamination by industrial emissions. For this, bacteria can produce plant growth promoter phytohormones and mediate the bioremediation of sewage by heavy metals removal. We developed a Rational Design of Immobilized Derivatives (RDID) strategy, applicable for protein, spore and cell immobilization and implemented in the RDID 1.0 software. In this work, we propose new algorithms to optimize the theoretical maximal quantity of cells to immobilize ( tMQ Cell ) on solid supports, implemented in the RDID Cell software. The main modifications to the preexisting algorithms are related to the sphere packing theory and exclusive immobilization on the support surface. We experimentally validated the new tMQ Cell parameter by electrostatic immobilization of ten microbial strains on AMBERJET ® 4200 Cl − porous solid support. All predicted tMQ Cell match the practical maximal quantity of cells to immobilize with a 10% confidence. The values predicted by the RDID Cell software are more accurate than the values predicted by the RDID 1.0 software. 3-indolacetic acid (IAA) production by one bacterial immobilized derivative was higher (~ 2.6 μg IAA-like indoles/10 8 cells) than that of the cell suspension (1.5 μg IAA-like indoles/10 8 cells), and higher than the tryptophan amount added as indole precursor. Another bacterial immobilized derivative was more active (22 μg Cr(III)/10 8 cells) than the resuspended cells (14.5 μg Cr(III)/10 8 cells) in bioconversion of Cr(VI) to Cr(III). Optimized RDID strategy can be used to synthesize bacterial immobilized derivatives with useful biotechnological applications. Graphic Abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>33392828</pmid><doi>10.1007/s11274-020-02972-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2671-9323</orcidid><orcidid>https://orcid.org/0000-0003-1627-6522</orcidid><orcidid>https://orcid.org/0000-0002-7155-9165</orcidid><orcidid>https://orcid.org/0000-0003-4958-1873</orcidid><orcidid>https://orcid.org/0000-0002-7175-8500</orcidid><orcidid>https://orcid.org/0000-0001-9608-5448</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0959-3993
ispartof World journal of microbiology & biotechnology, 2021-01, Vol.37 (1), p.9-9, Article 9
issn 0959-3993
1573-0972
language eng
recordid cdi_proquest_miscellaneous_2475090400
source Springer Nature - Complete Springer Journals
subjects Algorithms
Applied Microbiology
Bacteria
Biochemistry
Bioconversion
Biomedical and Life Sciences
Bioremediation
Biotechnology
Chromium
Computer programs
Derivatives
Environmental Engineering/Biotechnology
Food contamination
Food production
Heavy metals
Immobilization
Indoleacetic acid
Indoles
Industrial emissions
Industrial pollution
Life Sciences
Microbiology
Microorganisms
Optimization
Original Paper
Plant growth
Plant growth promoters
Plant hormones
Sewage
Software
Strategy
Trivalent chromium
Tryptophan
title Optimization of theoretical maximal quantity of cells to immobilize on solid supports in the rational design of immobilized derivatives strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20theoretical%20maximal%20quantity%20of%20cells%20to%20immobilize%20on%20solid%20supports%20in%20the%20rational%20design%20of%20immobilized%20derivatives%20strategy&rft.jtitle=World%20journal%20of%20microbiology%20&%20biotechnology&rft.au=Castillo-Alfonso,%20Freddy&rft.date=2021-01-01&rft.volume=37&rft.issue=1&rft.spage=9&rft.epage=9&rft.pages=9-9&rft.artnum=9&rft.issn=0959-3993&rft.eissn=1573-0972&rft_id=info:doi/10.1007/s11274-020-02972-6&rft_dat=%3Cproquest_cross%3E2475090400%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474754150&rft_id=info:pmid/33392828&rfr_iscdi=true