Regulation of bacterial ATP synthase activity: A gear‐shifting or a pawl–ratchet mechanism?

The F1FO‐ATP synthase is a rotary reversible nanomotor that makes ATP. Upon blockage of the respiratory chain or when uncoupling agents are present, the enzyme is prone to hydrolyze ATP, but natural inhibitor proteins prevent this wasteful activity. Here, we address the inhibitory mechanism of the ε...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2021-05, Vol.288 (10), p.3159-3163
Hauptverfasser: Miranda‐Astudillo, Héctor, Zarco‐Zavala, Mariel, García‐Trejo, José J., González‐Halphen, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3163
container_issue 10
container_start_page 3159
container_title The FEBS journal
container_volume 288
creator Miranda‐Astudillo, Héctor
Zarco‐Zavala, Mariel
García‐Trejo, José J.
González‐Halphen, Diego
description The F1FO‐ATP synthase is a rotary reversible nanomotor that makes ATP. Upon blockage of the respiratory chain or when uncoupling agents are present, the enzyme is prone to hydrolyze ATP, but natural inhibitor proteins prevent this wasteful activity. Here, we address the inhibitory mechanism of the ε‐subunit of Escherichia coli and discuss whether it acts as a modulator of the ATPase turnover (gear‐shifting mechanism) or as an all‐or‐nothing inhibitor (pawl–ratchet mechanism). Comment on: https://doi.org/10.1111/febs.15616 The F1Fo‐ATP synthase, a widely distributed nanomotor responsible of ATP synthesis, rotates its central rotor reversibly: In the clockwise direction when viewed from the Fo (with the observer facing the positive side of the energy transducing membrane and looking down into the negative side of the membrane), it functions as ATP synthase, while in counterclockwise sense, it operates as a proton‐pumping ATP hydrolase. Regulation exerted by naturally occurring inhibitory proteins of the enzyme appears to function by avoiding ATP hydrolysis while preserving ATP synthesis. The work of Liu et al. describes an unbiased, elegant analytical pipeline that provides important insights into the inhibitory role of the ε‐subunit of the bacterial F1Fo‐ATP synthase in vivo. We discuss if a gear‐shifting versus a pawl–ratchet mechanism may explain the regulatory role of the ε‐subunit.
doi_str_mv 10.1111/febs.15671
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473900407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473900407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3931-b5eb381c7db63a3cf8bf85ce4d1d22be6bbab17e53ef22a9f58fc28e37faae93</originalsourceid><addsrcrecordid>eNp9kM1qGzEQgEVJqFO3lz5AEOQSCnZW0mq1m0twQ9wGDAmND7mJkTyyFfbHkXYbfMsjFPqGfpJu6iSHHKLLiOHjY_gI-cqSMevfiUMTx0xmin0gB0ylfJRmMt97_ae3A_IpxrskETItio9kIIRQShbygOhfuOxKaH1T08ZRA7bF4KGkk_k1jZu6XUFE2m_9b99uTumELhHC9vFPXHnX-npJm0CBruGh3D7-DdDaFba0QruC2sfq7DPZd1BG_PI8h2Q-vZif_xzNrn5cnk9mIysKwUZGohE5s2phMgHCuty4XFpMF2zBucHMGDBMoRToOIfCydxZnqNQDgALMSTHO-06NPcdxlZXPlosS6ix6aLmqRJFkqSJ6tGjN-hd04W6P05zyXOWZyJjPfVtR9nQxBjQ6XXwFYSNZol-qq6fquv_1Xv48FnZmQoXr-hL5h5gO-DBl7h5R6WnF99vdtJ_w5OPtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528186361</pqid></control><display><type>article</type><title>Regulation of bacterial ATP synthase activity: A gear‐shifting or a pawl–ratchet mechanism?</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Miranda‐Astudillo, Héctor ; Zarco‐Zavala, Mariel ; García‐Trejo, José J. ; González‐Halphen, Diego</creator><creatorcontrib>Miranda‐Astudillo, Héctor ; Zarco‐Zavala, Mariel ; García‐Trejo, José J. ; González‐Halphen, Diego</creatorcontrib><description>The F1FO‐ATP synthase is a rotary reversible nanomotor that makes ATP. Upon blockage of the respiratory chain or when uncoupling agents are present, the enzyme is prone to hydrolyze ATP, but natural inhibitor proteins prevent this wasteful activity. Here, we address the inhibitory mechanism of the ε‐subunit of Escherichia coli and discuss whether it acts as a modulator of the ATPase turnover (gear‐shifting mechanism) or as an all‐or‐nothing inhibitor (pawl–ratchet mechanism). Comment on: https://doi.org/10.1111/febs.15616 The F1Fo‐ATP synthase, a widely distributed nanomotor responsible of ATP synthesis, rotates its central rotor reversibly: In the clockwise direction when viewed from the Fo (with the observer facing the positive side of the energy transducing membrane and looking down into the negative side of the membrane), it functions as ATP synthase, while in counterclockwise sense, it operates as a proton‐pumping ATP hydrolase. Regulation exerted by naturally occurring inhibitory proteins of the enzyme appears to function by avoiding ATP hydrolysis while preserving ATP synthesis. The work of Liu et al. describes an unbiased, elegant analytical pipeline that provides important insights into the inhibitory role of the ε‐subunit of the bacterial F1Fo‐ATP synthase in vivo. We discuss if a gear‐shifting versus a pawl–ratchet mechanism may explain the regulatory role of the ε‐subunit.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.15671</identifier><identifier>PMID: 33377595</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>ATP ; ATP hydrolysis ; ATP synthase ; bacterial F1Fo‐ATP synthase ; Hydrolase ; Membranes ; Nanotechnology devices ; natural ATPase inhibitors ; Synthesis ; ε‐subunit</subject><ispartof>The FEBS journal, 2021-05, Vol.288 (10), p.3159-3163</ispartof><rights>2020 Federation of European Biochemical Societies</rights><rights>2020 Federation of European Biochemical Societies.</rights><rights>Copyright © 2021 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3931-b5eb381c7db63a3cf8bf85ce4d1d22be6bbab17e53ef22a9f58fc28e37faae93</citedby><cites>FETCH-LOGICAL-c3931-b5eb381c7db63a3cf8bf85ce4d1d22be6bbab17e53ef22a9f58fc28e37faae93</cites><orcidid>0000-0003-0654-655X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.15671$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.15671$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33377595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miranda‐Astudillo, Héctor</creatorcontrib><creatorcontrib>Zarco‐Zavala, Mariel</creatorcontrib><creatorcontrib>García‐Trejo, José J.</creatorcontrib><creatorcontrib>González‐Halphen, Diego</creatorcontrib><title>Regulation of bacterial ATP synthase activity: A gear‐shifting or a pawl–ratchet mechanism?</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>The F1FO‐ATP synthase is a rotary reversible nanomotor that makes ATP. Upon blockage of the respiratory chain or when uncoupling agents are present, the enzyme is prone to hydrolyze ATP, but natural inhibitor proteins prevent this wasteful activity. Here, we address the inhibitory mechanism of the ε‐subunit of Escherichia coli and discuss whether it acts as a modulator of the ATPase turnover (gear‐shifting mechanism) or as an all‐or‐nothing inhibitor (pawl–ratchet mechanism). Comment on: https://doi.org/10.1111/febs.15616 The F1Fo‐ATP synthase, a widely distributed nanomotor responsible of ATP synthesis, rotates its central rotor reversibly: In the clockwise direction when viewed from the Fo (with the observer facing the positive side of the energy transducing membrane and looking down into the negative side of the membrane), it functions as ATP synthase, while in counterclockwise sense, it operates as a proton‐pumping ATP hydrolase. Regulation exerted by naturally occurring inhibitory proteins of the enzyme appears to function by avoiding ATP hydrolysis while preserving ATP synthesis. The work of Liu et al. describes an unbiased, elegant analytical pipeline that provides important insights into the inhibitory role of the ε‐subunit of the bacterial F1Fo‐ATP synthase in vivo. We discuss if a gear‐shifting versus a pawl–ratchet mechanism may explain the regulatory role of the ε‐subunit.</description><subject>ATP</subject><subject>ATP hydrolysis</subject><subject>ATP synthase</subject><subject>bacterial F1Fo‐ATP synthase</subject><subject>Hydrolase</subject><subject>Membranes</subject><subject>Nanotechnology devices</subject><subject>natural ATPase inhibitors</subject><subject>Synthesis</subject><subject>ε‐subunit</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qGzEQgEVJqFO3lz5AEOQSCnZW0mq1m0twQ9wGDAmND7mJkTyyFfbHkXYbfMsjFPqGfpJu6iSHHKLLiOHjY_gI-cqSMevfiUMTx0xmin0gB0ylfJRmMt97_ae3A_IpxrskETItio9kIIRQShbygOhfuOxKaH1T08ZRA7bF4KGkk_k1jZu6XUFE2m_9b99uTumELhHC9vFPXHnX-npJm0CBruGh3D7-DdDaFba0QruC2sfq7DPZd1BG_PI8h2Q-vZif_xzNrn5cnk9mIysKwUZGohE5s2phMgHCuty4XFpMF2zBucHMGDBMoRToOIfCydxZnqNQDgALMSTHO-06NPcdxlZXPlosS6ix6aLmqRJFkqSJ6tGjN-hd04W6P05zyXOWZyJjPfVtR9nQxBjQ6XXwFYSNZol-qq6fquv_1Xv48FnZmQoXr-hL5h5gO-DBl7h5R6WnF99vdtJ_w5OPtQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Miranda‐Astudillo, Héctor</creator><creator>Zarco‐Zavala, Mariel</creator><creator>García‐Trejo, José J.</creator><creator>González‐Halphen, Diego</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0654-655X</orcidid></search><sort><creationdate>202105</creationdate><title>Regulation of bacterial ATP synthase activity: A gear‐shifting or a pawl–ratchet mechanism?</title><author>Miranda‐Astudillo, Héctor ; Zarco‐Zavala, Mariel ; García‐Trejo, José J. ; González‐Halphen, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3931-b5eb381c7db63a3cf8bf85ce4d1d22be6bbab17e53ef22a9f58fc28e37faae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ATP</topic><topic>ATP hydrolysis</topic><topic>ATP synthase</topic><topic>bacterial F1Fo‐ATP synthase</topic><topic>Hydrolase</topic><topic>Membranes</topic><topic>Nanotechnology devices</topic><topic>natural ATPase inhibitors</topic><topic>Synthesis</topic><topic>ε‐subunit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miranda‐Astudillo, Héctor</creatorcontrib><creatorcontrib>Zarco‐Zavala, Mariel</creatorcontrib><creatorcontrib>García‐Trejo, José J.</creatorcontrib><creatorcontrib>González‐Halphen, Diego</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miranda‐Astudillo, Héctor</au><au>Zarco‐Zavala, Mariel</au><au>García‐Trejo, José J.</au><au>González‐Halphen, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of bacterial ATP synthase activity: A gear‐shifting or a pawl–ratchet mechanism?</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2021-05</date><risdate>2021</risdate><volume>288</volume><issue>10</issue><spage>3159</spage><epage>3163</epage><pages>3159-3163</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>The F1FO‐ATP synthase is a rotary reversible nanomotor that makes ATP. Upon blockage of the respiratory chain or when uncoupling agents are present, the enzyme is prone to hydrolyze ATP, but natural inhibitor proteins prevent this wasteful activity. Here, we address the inhibitory mechanism of the ε‐subunit of Escherichia coli and discuss whether it acts as a modulator of the ATPase turnover (gear‐shifting mechanism) or as an all‐or‐nothing inhibitor (pawl–ratchet mechanism). Comment on: https://doi.org/10.1111/febs.15616 The F1Fo‐ATP synthase, a widely distributed nanomotor responsible of ATP synthesis, rotates its central rotor reversibly: In the clockwise direction when viewed from the Fo (with the observer facing the positive side of the energy transducing membrane and looking down into the negative side of the membrane), it functions as ATP synthase, while in counterclockwise sense, it operates as a proton‐pumping ATP hydrolase. Regulation exerted by naturally occurring inhibitory proteins of the enzyme appears to function by avoiding ATP hydrolysis while preserving ATP synthesis. The work of Liu et al. describes an unbiased, elegant analytical pipeline that provides important insights into the inhibitory role of the ε‐subunit of the bacterial F1Fo‐ATP synthase in vivo. We discuss if a gear‐shifting versus a pawl–ratchet mechanism may explain the regulatory role of the ε‐subunit.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>33377595</pmid><doi>10.1111/febs.15671</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0654-655X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2021-05, Vol.288 (10), p.3159-3163
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_2473900407
source Wiley Free Content; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry
subjects ATP
ATP hydrolysis
ATP synthase
bacterial F1Fo‐ATP synthase
Hydrolase
Membranes
Nanotechnology devices
natural ATPase inhibitors
Synthesis
ε‐subunit
title Regulation of bacterial ATP synthase activity: A gear‐shifting or a pawl–ratchet mechanism?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20bacterial%20ATP%20synthase%20activity:%20A%20gear%E2%80%90shifting%20or%20a%20pawl%E2%80%93ratchet%20mechanism?&rft.jtitle=The%20FEBS%20journal&rft.au=Miranda%E2%80%90Astudillo,%20H%C3%A9ctor&rft.date=2021-05&rft.volume=288&rft.issue=10&rft.spage=3159&rft.epage=3163&rft.pages=3159-3163&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.15671&rft_dat=%3Cproquest_cross%3E2473900407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528186361&rft_id=info:pmid/33377595&rfr_iscdi=true