Regulation of bacterial ATP synthase activity: A gear‐shifting or a pawl–ratchet mechanism?
The F1FO‐ATP synthase is a rotary reversible nanomotor that makes ATP. Upon blockage of the respiratory chain or when uncoupling agents are present, the enzyme is prone to hydrolyze ATP, but natural inhibitor proteins prevent this wasteful activity. Here, we address the inhibitory mechanism of the ε...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2021-05, Vol.288 (10), p.3159-3163 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3163 |
---|---|
container_issue | 10 |
container_start_page | 3159 |
container_title | The FEBS journal |
container_volume | 288 |
creator | Miranda‐Astudillo, Héctor Zarco‐Zavala, Mariel García‐Trejo, José J. González‐Halphen, Diego |
description | The F1FO‐ATP synthase is a rotary reversible nanomotor that makes ATP. Upon blockage of the respiratory chain or when uncoupling agents are present, the enzyme is prone to hydrolyze ATP, but natural inhibitor proteins prevent this wasteful activity. Here, we address the inhibitory mechanism of the ε‐subunit of Escherichia coli and discuss whether it acts as a modulator of the ATPase turnover (gear‐shifting mechanism) or as an all‐or‐nothing inhibitor (pawl–ratchet mechanism).
Comment on: https://doi.org/10.1111/febs.15616
The F1Fo‐ATP synthase, a widely distributed nanomotor responsible of ATP synthesis, rotates its central rotor reversibly: In the clockwise direction when viewed from the Fo (with the observer facing the positive side of the energy transducing membrane and looking down into the negative side of the membrane), it functions as ATP synthase, while in counterclockwise sense, it operates as a proton‐pumping ATP hydrolase. Regulation exerted by naturally occurring inhibitory proteins of the enzyme appears to function by avoiding ATP hydrolysis while preserving ATP synthesis. The work of Liu et al. describes an unbiased, elegant analytical pipeline that provides important insights into the inhibitory role of the ε‐subunit of the bacterial F1Fo‐ATP synthase in vivo. We discuss if a gear‐shifting versus a pawl–ratchet mechanism may explain the regulatory role of the ε‐subunit. |
doi_str_mv | 10.1111/febs.15671 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473900407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473900407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3931-b5eb381c7db63a3cf8bf85ce4d1d22be6bbab17e53ef22a9f58fc28e37faae93</originalsourceid><addsrcrecordid>eNp9kM1qGzEQgEVJqFO3lz5AEOQSCnZW0mq1m0twQ9wGDAmND7mJkTyyFfbHkXYbfMsjFPqGfpJu6iSHHKLLiOHjY_gI-cqSMevfiUMTx0xmin0gB0ylfJRmMt97_ae3A_IpxrskETItio9kIIRQShbygOhfuOxKaH1T08ZRA7bF4KGkk_k1jZu6XUFE2m_9b99uTumELhHC9vFPXHnX-npJm0CBruGh3D7-DdDaFba0QruC2sfq7DPZd1BG_PI8h2Q-vZif_xzNrn5cnk9mIysKwUZGohE5s2phMgHCuty4XFpMF2zBucHMGDBMoRToOIfCydxZnqNQDgALMSTHO-06NPcdxlZXPlosS6ix6aLmqRJFkqSJ6tGjN-hd04W6P05zyXOWZyJjPfVtR9nQxBjQ6XXwFYSNZol-qq6fquv_1Xv48FnZmQoXr-hL5h5gO-DBl7h5R6WnF99vdtJ_w5OPtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528186361</pqid></control><display><type>article</type><title>Regulation of bacterial ATP synthase activity: A gear‐shifting or a pawl–ratchet mechanism?</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Miranda‐Astudillo, Héctor ; Zarco‐Zavala, Mariel ; García‐Trejo, José J. ; González‐Halphen, Diego</creator><creatorcontrib>Miranda‐Astudillo, Héctor ; Zarco‐Zavala, Mariel ; García‐Trejo, José J. ; González‐Halphen, Diego</creatorcontrib><description>The F1FO‐ATP synthase is a rotary reversible nanomotor that makes ATP. Upon blockage of the respiratory chain or when uncoupling agents are present, the enzyme is prone to hydrolyze ATP, but natural inhibitor proteins prevent this wasteful activity. Here, we address the inhibitory mechanism of the ε‐subunit of Escherichia coli and discuss whether it acts as a modulator of the ATPase turnover (gear‐shifting mechanism) or as an all‐or‐nothing inhibitor (pawl–ratchet mechanism).
Comment on: https://doi.org/10.1111/febs.15616
The F1Fo‐ATP synthase, a widely distributed nanomotor responsible of ATP synthesis, rotates its central rotor reversibly: In the clockwise direction when viewed from the Fo (with the observer facing the positive side of the energy transducing membrane and looking down into the negative side of the membrane), it functions as ATP synthase, while in counterclockwise sense, it operates as a proton‐pumping ATP hydrolase. Regulation exerted by naturally occurring inhibitory proteins of the enzyme appears to function by avoiding ATP hydrolysis while preserving ATP synthesis. The work of Liu et al. describes an unbiased, elegant analytical pipeline that provides important insights into the inhibitory role of the ε‐subunit of the bacterial F1Fo‐ATP synthase in vivo. We discuss if a gear‐shifting versus a pawl–ratchet mechanism may explain the regulatory role of the ε‐subunit.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.15671</identifier><identifier>PMID: 33377595</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>ATP ; ATP hydrolysis ; ATP synthase ; bacterial F1Fo‐ATP synthase ; Hydrolase ; Membranes ; Nanotechnology devices ; natural ATPase inhibitors ; Synthesis ; ε‐subunit</subject><ispartof>The FEBS journal, 2021-05, Vol.288 (10), p.3159-3163</ispartof><rights>2020 Federation of European Biochemical Societies</rights><rights>2020 Federation of European Biochemical Societies.</rights><rights>Copyright © 2021 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3931-b5eb381c7db63a3cf8bf85ce4d1d22be6bbab17e53ef22a9f58fc28e37faae93</citedby><cites>FETCH-LOGICAL-c3931-b5eb381c7db63a3cf8bf85ce4d1d22be6bbab17e53ef22a9f58fc28e37faae93</cites><orcidid>0000-0003-0654-655X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.15671$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.15671$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33377595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miranda‐Astudillo, Héctor</creatorcontrib><creatorcontrib>Zarco‐Zavala, Mariel</creatorcontrib><creatorcontrib>García‐Trejo, José J.</creatorcontrib><creatorcontrib>González‐Halphen, Diego</creatorcontrib><title>Regulation of bacterial ATP synthase activity: A gear‐shifting or a pawl–ratchet mechanism?</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>The F1FO‐ATP synthase is a rotary reversible nanomotor that makes ATP. Upon blockage of the respiratory chain or when uncoupling agents are present, the enzyme is prone to hydrolyze ATP, but natural inhibitor proteins prevent this wasteful activity. Here, we address the inhibitory mechanism of the ε‐subunit of Escherichia coli and discuss whether it acts as a modulator of the ATPase turnover (gear‐shifting mechanism) or as an all‐or‐nothing inhibitor (pawl–ratchet mechanism).
Comment on: https://doi.org/10.1111/febs.15616
The F1Fo‐ATP synthase, a widely distributed nanomotor responsible of ATP synthesis, rotates its central rotor reversibly: In the clockwise direction when viewed from the Fo (with the observer facing the positive side of the energy transducing membrane and looking down into the negative side of the membrane), it functions as ATP synthase, while in counterclockwise sense, it operates as a proton‐pumping ATP hydrolase. Regulation exerted by naturally occurring inhibitory proteins of the enzyme appears to function by avoiding ATP hydrolysis while preserving ATP synthesis. The work of Liu et al. describes an unbiased, elegant analytical pipeline that provides important insights into the inhibitory role of the ε‐subunit of the bacterial F1Fo‐ATP synthase in vivo. We discuss if a gear‐shifting versus a pawl–ratchet mechanism may explain the regulatory role of the ε‐subunit.</description><subject>ATP</subject><subject>ATP hydrolysis</subject><subject>ATP synthase</subject><subject>bacterial F1Fo‐ATP synthase</subject><subject>Hydrolase</subject><subject>Membranes</subject><subject>Nanotechnology devices</subject><subject>natural ATPase inhibitors</subject><subject>Synthesis</subject><subject>ε‐subunit</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1qGzEQgEVJqFO3lz5AEOQSCnZW0mq1m0twQ9wGDAmND7mJkTyyFfbHkXYbfMsjFPqGfpJu6iSHHKLLiOHjY_gI-cqSMevfiUMTx0xmin0gB0ylfJRmMt97_ae3A_IpxrskETItio9kIIRQShbygOhfuOxKaH1T08ZRA7bF4KGkk_k1jZu6XUFE2m_9b99uTumELhHC9vFPXHnX-npJm0CBruGh3D7-DdDaFba0QruC2sfq7DPZd1BG_PI8h2Q-vZif_xzNrn5cnk9mIysKwUZGohE5s2phMgHCuty4XFpMF2zBucHMGDBMoRToOIfCydxZnqNQDgALMSTHO-06NPcdxlZXPlosS6ix6aLmqRJFkqSJ6tGjN-hd04W6P05zyXOWZyJjPfVtR9nQxBjQ6XXwFYSNZol-qq6fquv_1Xv48FnZmQoXr-hL5h5gO-DBl7h5R6WnF99vdtJ_w5OPtQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Miranda‐Astudillo, Héctor</creator><creator>Zarco‐Zavala, Mariel</creator><creator>García‐Trejo, José J.</creator><creator>González‐Halphen, Diego</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0654-655X</orcidid></search><sort><creationdate>202105</creationdate><title>Regulation of bacterial ATP synthase activity: A gear‐shifting or a pawl–ratchet mechanism?</title><author>Miranda‐Astudillo, Héctor ; Zarco‐Zavala, Mariel ; García‐Trejo, José J. ; González‐Halphen, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3931-b5eb381c7db63a3cf8bf85ce4d1d22be6bbab17e53ef22a9f58fc28e37faae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ATP</topic><topic>ATP hydrolysis</topic><topic>ATP synthase</topic><topic>bacterial F1Fo‐ATP synthase</topic><topic>Hydrolase</topic><topic>Membranes</topic><topic>Nanotechnology devices</topic><topic>natural ATPase inhibitors</topic><topic>Synthesis</topic><topic>ε‐subunit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miranda‐Astudillo, Héctor</creatorcontrib><creatorcontrib>Zarco‐Zavala, Mariel</creatorcontrib><creatorcontrib>García‐Trejo, José J.</creatorcontrib><creatorcontrib>González‐Halphen, Diego</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miranda‐Astudillo, Héctor</au><au>Zarco‐Zavala, Mariel</au><au>García‐Trejo, José J.</au><au>González‐Halphen, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of bacterial ATP synthase activity: A gear‐shifting or a pawl–ratchet mechanism?</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2021-05</date><risdate>2021</risdate><volume>288</volume><issue>10</issue><spage>3159</spage><epage>3163</epage><pages>3159-3163</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>The F1FO‐ATP synthase is a rotary reversible nanomotor that makes ATP. Upon blockage of the respiratory chain or when uncoupling agents are present, the enzyme is prone to hydrolyze ATP, but natural inhibitor proteins prevent this wasteful activity. Here, we address the inhibitory mechanism of the ε‐subunit of Escherichia coli and discuss whether it acts as a modulator of the ATPase turnover (gear‐shifting mechanism) or as an all‐or‐nothing inhibitor (pawl–ratchet mechanism).
Comment on: https://doi.org/10.1111/febs.15616
The F1Fo‐ATP synthase, a widely distributed nanomotor responsible of ATP synthesis, rotates its central rotor reversibly: In the clockwise direction when viewed from the Fo (with the observer facing the positive side of the energy transducing membrane and looking down into the negative side of the membrane), it functions as ATP synthase, while in counterclockwise sense, it operates as a proton‐pumping ATP hydrolase. Regulation exerted by naturally occurring inhibitory proteins of the enzyme appears to function by avoiding ATP hydrolysis while preserving ATP synthesis. The work of Liu et al. describes an unbiased, elegant analytical pipeline that provides important insights into the inhibitory role of the ε‐subunit of the bacterial F1Fo‐ATP synthase in vivo. We discuss if a gear‐shifting versus a pawl–ratchet mechanism may explain the regulatory role of the ε‐subunit.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>33377595</pmid><doi>10.1111/febs.15671</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0654-655X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2021-05, Vol.288 (10), p.3159-3163 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_2473900407 |
source | Wiley Free Content; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry |
subjects | ATP ATP hydrolysis ATP synthase bacterial F1Fo‐ATP synthase Hydrolase Membranes Nanotechnology devices natural ATPase inhibitors Synthesis ε‐subunit |
title | Regulation of bacterial ATP synthase activity: A gear‐shifting or a pawl–ratchet mechanism? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20bacterial%20ATP%20synthase%20activity:%20A%20gear%E2%80%90shifting%20or%20a%20pawl%E2%80%93ratchet%20mechanism?&rft.jtitle=The%20FEBS%20journal&rft.au=Miranda%E2%80%90Astudillo,%20H%C3%A9ctor&rft.date=2021-05&rft.volume=288&rft.issue=10&rft.spage=3159&rft.epage=3163&rft.pages=3159-3163&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.15671&rft_dat=%3Cproquest_cross%3E2473900407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528186361&rft_id=info:pmid/33377595&rfr_iscdi=true |