Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries

Aqueous zinc-ion batteries (AZIBs) have the potential to be utilized in a grid-scale energy storage system owing to their high energy density and cost-effective properties. However, the dissolution of cathode materials and the irreversible extraction of preintercalated metal ions in the electrode ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-01, Vol.13 (1), p.745-754
Hauptverfasser: Dong, Haobo, Li, Jianwei, Zhao, Siyu, Jiao, Yiding, Chen, Jintao, Tan, Yeshu, Brett, Dan J. L., He, Guanjie, Parkin, Ivan P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 754
container_issue 1
container_start_page 745
container_title ACS applied materials & interfaces
container_volume 13
creator Dong, Haobo
Li, Jianwei
Zhao, Siyu
Jiao, Yiding
Chen, Jintao
Tan, Yeshu
Brett, Dan J. L.
He, Guanjie
Parkin, Ivan P.
description Aqueous zinc-ion batteries (AZIBs) have the potential to be utilized in a grid-scale energy storage system owing to their high energy density and cost-effective properties. However, the dissolution of cathode materials and the irreversible extraction of preintercalated metal ions in the electrode materials restrict the stability of AZIBs. Herein, a cathode-stabilized ZIB strategy is reported based on a natural biomass polymer sodium alginate as the electrolyte coupling with a Na+ preintercalated delta-Na0.65Mn2O4 center dot 1.31H(2)O cathode. The dissociated Na+ in alginate after gelation directly stabilizes the cathodes by preventing the collapse of layered structures during charge processes. The asfabricated ZIBs deliver a high capacity of 305 mA h g(-1) at 0.1 A g(-1), 10% higher than the ZIBs with an aqueous electrolyte. Further, the hybrid polymer electrolyte possessed an excellent Coulombic efficiency above 99% and a capacity retention of 96% within 1000 cycles at 2 A g(-1). A detailed investigation combining ex situ experiments uncovers the charge storage mechanism and the stability of assembled batteries, confirming the reversible diffusions of both Zn2+ and preintercalated Nat. A flexible device of ZIBs fabricated based on vacuum-assisted resin transfer molding possesses an outstanding performance of 160 mA h g(-1) at 1 A g(-1), which illustrates their potential for wearable electronics in mass production.
doi_str_mv 10.1021/acsami.0c20388
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473747479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473747479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-b939f789f46d09efb25437c2a66bad7eb989feaf1312ffbdce875a3779dae6d3</originalsourceid><addsrcrecordid>eNqNkU1P3DAURa2qqFDaLcvKy0pVBn8kcbKEiJaRUFnAik304jwPrpwYbKfV9NfjdoZZIy98pXd8pXdMyBlnK84EPwcdYbIrpgWTTfOOnPC2LItGVOL9IZflMfkY4y_GailY9YEcSykV46w5Ibief2NMdgPJ-pl6Q4FeWj9BjPR6Owa_QUevHOoUvNsmpD8hLQGc29K7BIN19q-dN7SD9OhHjNT4QB_srIt1bruElDBYjJ_IkQEX8fP-PiX336_uu-vi5vbHuru4KbSUVSqGVrZGNa0p65G1aAZRlVJpAXU9wKhwaPMMwXDJhTHDqLFRFUil2hGwHuUp-bqrfQr-eclr9ZONGp2DGf0Se1Eqqcp82oyudqgOPsaApn8KdoKw7Tnr_5ntd2b7vdn84Mu-exkmHA_4q8oMfNsBf3DwJmqLs8YDxrJ8zlld58AUy3Tzdrqz6f_3dH6Zk3wB8fyYSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473747479</pqid></control><display><type>article</type><title>Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Dong, Haobo ; Li, Jianwei ; Zhao, Siyu ; Jiao, Yiding ; Chen, Jintao ; Tan, Yeshu ; Brett, Dan J. L. ; He, Guanjie ; Parkin, Ivan P.</creator><creatorcontrib>Dong, Haobo ; Li, Jianwei ; Zhao, Siyu ; Jiao, Yiding ; Chen, Jintao ; Tan, Yeshu ; Brett, Dan J. L. ; He, Guanjie ; Parkin, Ivan P.</creatorcontrib><description>Aqueous zinc-ion batteries (AZIBs) have the potential to be utilized in a grid-scale energy storage system owing to their high energy density and cost-effective properties. However, the dissolution of cathode materials and the irreversible extraction of preintercalated metal ions in the electrode materials restrict the stability of AZIBs. Herein, a cathode-stabilized ZIB strategy is reported based on a natural biomass polymer sodium alginate as the electrolyte coupling with a Na+ preintercalated delta-Na0.65Mn2O4 center dot 1.31H(2)O cathode. The dissociated Na+ in alginate after gelation directly stabilizes the cathodes by preventing the collapse of layered structures during charge processes. The asfabricated ZIBs deliver a high capacity of 305 mA h g(-1) at 0.1 A g(-1), 10% higher than the ZIBs with an aqueous electrolyte. Further, the hybrid polymer electrolyte possessed an excellent Coulombic efficiency above 99% and a capacity retention of 96% within 1000 cycles at 2 A g(-1). A detailed investigation combining ex situ experiments uncovers the charge storage mechanism and the stability of assembled batteries, confirming the reversible diffusions of both Zn2+ and preintercalated Nat. A flexible device of ZIBs fabricated based on vacuum-assisted resin transfer molding possesses an outstanding performance of 160 mA h g(-1) at 1 A g(-1), which illustrates their potential for wearable electronics in mass production.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c20388</identifier><identifier>PMID: 33370108</identifier><language>eng</language><publisher>WASHINGTON: Amer Chemical Soc</publisher><subject>Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>ACS applied materials &amp; interfaces, 2021-01, Vol.13 (1), p.745-754</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>72</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000611066000070</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c335t-b939f789f46d09efb25437c2a66bad7eb989feaf1312ffbdce875a3779dae6d3</citedby><cites>FETCH-LOGICAL-c335t-b939f789f46d09efb25437c2a66bad7eb989feaf1312ffbdce875a3779dae6d3</cites><orcidid>0000-0002-4072-6610 ; 0000-0002-8545-3126 ; 0000-0002-7365-9645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2767,27931,27932,39265</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33370108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Haobo</creatorcontrib><creatorcontrib>Li, Jianwei</creatorcontrib><creatorcontrib>Zhao, Siyu</creatorcontrib><creatorcontrib>Jiao, Yiding</creatorcontrib><creatorcontrib>Chen, Jintao</creatorcontrib><creatorcontrib>Tan, Yeshu</creatorcontrib><creatorcontrib>Brett, Dan J. L.</creatorcontrib><creatorcontrib>He, Guanjie</creatorcontrib><creatorcontrib>Parkin, Ivan P.</creatorcontrib><title>Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS APPL MATER INTER</addtitle><addtitle>ACS Appl Mater Interfaces</addtitle><description>Aqueous zinc-ion batteries (AZIBs) have the potential to be utilized in a grid-scale energy storage system owing to their high energy density and cost-effective properties. However, the dissolution of cathode materials and the irreversible extraction of preintercalated metal ions in the electrode materials restrict the stability of AZIBs. Herein, a cathode-stabilized ZIB strategy is reported based on a natural biomass polymer sodium alginate as the electrolyte coupling with a Na+ preintercalated delta-Na0.65Mn2O4 center dot 1.31H(2)O cathode. The dissociated Na+ in alginate after gelation directly stabilizes the cathodes by preventing the collapse of layered structures during charge processes. The asfabricated ZIBs deliver a high capacity of 305 mA h g(-1) at 0.1 A g(-1), 10% higher than the ZIBs with an aqueous electrolyte. Further, the hybrid polymer electrolyte possessed an excellent Coulombic efficiency above 99% and a capacity retention of 96% within 1000 cycles at 2 A g(-1). A detailed investigation combining ex situ experiments uncovers the charge storage mechanism and the stability of assembled batteries, confirming the reversible diffusions of both Zn2+ and preintercalated Nat. A flexible device of ZIBs fabricated based on vacuum-assisted resin transfer molding possesses an outstanding performance of 160 mA h g(-1) at 1 A g(-1), which illustrates their potential for wearable electronics in mass production.</description><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkU1P3DAURa2qqFDaLcvKy0pVBn8kcbKEiJaRUFnAik304jwPrpwYbKfV9NfjdoZZIy98pXd8pXdMyBlnK84EPwcdYbIrpgWTTfOOnPC2LItGVOL9IZflMfkY4y_GailY9YEcSykV46w5Ibief2NMdgPJ-pl6Q4FeWj9BjPR6Owa_QUevHOoUvNsmpD8hLQGc29K7BIN19q-dN7SD9OhHjNT4QB_srIt1bruElDBYjJ_IkQEX8fP-PiX336_uu-vi5vbHuru4KbSUVSqGVrZGNa0p65G1aAZRlVJpAXU9wKhwaPMMwXDJhTHDqLFRFUil2hGwHuUp-bqrfQr-eclr9ZONGp2DGf0Se1Eqqcp82oyudqgOPsaApn8KdoKw7Tnr_5ntd2b7vdn84Mu-exkmHA_4q8oMfNsBf3DwJmqLs8YDxrJ8zlld58AUy3Tzdrqz6f_3dH6Zk3wB8fyYSA</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Dong, Haobo</creator><creator>Li, Jianwei</creator><creator>Zhao, Siyu</creator><creator>Jiao, Yiding</creator><creator>Chen, Jintao</creator><creator>Tan, Yeshu</creator><creator>Brett, Dan J. L.</creator><creator>He, Guanjie</creator><creator>Parkin, Ivan P.</creator><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4072-6610</orcidid><orcidid>https://orcid.org/0000-0002-8545-3126</orcidid><orcidid>https://orcid.org/0000-0002-7365-9645</orcidid></search><sort><creationdate>20210113</creationdate><title>Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries</title><author>Dong, Haobo ; Li, Jianwei ; Zhao, Siyu ; Jiao, Yiding ; Chen, Jintao ; Tan, Yeshu ; Brett, Dan J. L. ; He, Guanjie ; Parkin, Ivan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-b939f789f46d09efb25437c2a66bad7eb989feaf1312ffbdce875a3779dae6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Haobo</creatorcontrib><creatorcontrib>Li, Jianwei</creatorcontrib><creatorcontrib>Zhao, Siyu</creatorcontrib><creatorcontrib>Jiao, Yiding</creatorcontrib><creatorcontrib>Chen, Jintao</creatorcontrib><creatorcontrib>Tan, Yeshu</creatorcontrib><creatorcontrib>Brett, Dan J. L.</creatorcontrib><creatorcontrib>He, Guanjie</creatorcontrib><creatorcontrib>Parkin, Ivan P.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Haobo</au><au>Li, Jianwei</au><au>Zhao, Siyu</au><au>Jiao, Yiding</au><au>Chen, Jintao</au><au>Tan, Yeshu</au><au>Brett, Dan J. L.</au><au>He, Guanjie</au><au>Parkin, Ivan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><stitle>ACS APPL MATER INTER</stitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2021-01-13</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>745</spage><epage>754</epage><pages>745-754</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Aqueous zinc-ion batteries (AZIBs) have the potential to be utilized in a grid-scale energy storage system owing to their high energy density and cost-effective properties. However, the dissolution of cathode materials and the irreversible extraction of preintercalated metal ions in the electrode materials restrict the stability of AZIBs. Herein, a cathode-stabilized ZIB strategy is reported based on a natural biomass polymer sodium alginate as the electrolyte coupling with a Na+ preintercalated delta-Na0.65Mn2O4 center dot 1.31H(2)O cathode. The dissociated Na+ in alginate after gelation directly stabilizes the cathodes by preventing the collapse of layered structures during charge processes. The asfabricated ZIBs deliver a high capacity of 305 mA h g(-1) at 0.1 A g(-1), 10% higher than the ZIBs with an aqueous electrolyte. Further, the hybrid polymer electrolyte possessed an excellent Coulombic efficiency above 99% and a capacity retention of 96% within 1000 cycles at 2 A g(-1). A detailed investigation combining ex situ experiments uncovers the charge storage mechanism and the stability of assembled batteries, confirming the reversible diffusions of both Zn2+ and preintercalated Nat. A flexible device of ZIBs fabricated based on vacuum-assisted resin transfer molding possesses an outstanding performance of 160 mA h g(-1) at 1 A g(-1), which illustrates their potential for wearable electronics in mass production.</abstract><cop>WASHINGTON</cop><pub>Amer Chemical Soc</pub><pmid>33370108</pmid><doi>10.1021/acsami.0c20388</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4072-6610</orcidid><orcidid>https://orcid.org/0000-0002-8545-3126</orcidid><orcidid>https://orcid.org/0000-0002-7365-9645</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-01, Vol.13 (1), p.745-754
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2473747479
source ACS Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Science & Technology
Science & Technology - Other Topics
Technology
title Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T11%3A14%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20a%20Biomass%20Hydrogel%20Electrolyte%20Naturally%20Stabilizing%20Cathodes%20for%20Zinc-Ion%20Batteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Dong,%20Haobo&rft.date=2021-01-13&rft.volume=13&rft.issue=1&rft.spage=745&rft.epage=754&rft.pages=745-754&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c20388&rft_dat=%3Cproquest_webof%3E2473747479%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473747479&rft_id=info:pmid/33370108&rfr_iscdi=true