Single-cell systems analysis: decision geometry in outliers
Abstract Motivation Anti-cancer therapeutics of the highest calibre currently focus on combinatorial targeting of specific oncoproteins and tumour suppressors. Clinical relapse depends upon intratumoral heterogeneity which serves as substrate variation during evolution of resistance to therapeutic r...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2021-07, Vol.37 (12), p.1747-1755 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1755 |
---|---|
container_issue | 12 |
container_start_page | 1747 |
container_title | Bioinformatics |
container_volume | 37 |
creator | Abrahams, Lianne |
description | Abstract
Motivation
Anti-cancer therapeutics of the highest calibre currently focus on combinatorial targeting of specific oncoproteins and tumour suppressors. Clinical relapse depends upon intratumoral heterogeneity which serves as substrate variation during evolution of resistance to therapeutic regimens.
Results
The present review advocates single-cell systems biology as the optimal level of analysis for remediation of clinical relapse. Graph theory approaches to understanding decision-making in single cells may be abstracted one level further, to the geometry of decision-making in outlier cells, in order to define evolution-resistant cancer biomarkers. Systems biologists currently working with omics data are invited to consider phase portrait analysis as a mediator between graph theory and deep learning approaches. Perhaps counter-intuitively, the tangible clinical needs of cancer patients may depend upon the adoption of higher level mathematical abstractions of cancer biology.
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btaa1078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473414795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa1078</oup_id><sourcerecordid>2473414795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-a7b4e236c7284785e3462fa5fa305cf549c9af6acf2400ef767d5c471896f70d3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEYmPwF6BHLmVJ89XCCU18SZM4AOcqTZ0pqG1G3B767-m0gcSNky35eW3rIeSK0RtGC76sfPCdC7E1vbe4rHpjGNX5EZkzoWiaUVkcTz1XOhU55TNyhvhJqWRCiFMy43yaiFzNyd2b7zYNpBaaJsERe2gxMZ1pRvR4m9RgPfrQJRsILfRxTHyXhKFvPEQ8JyfONAgXh7ogH48P76vndP369LK6X6eWS9anRlcCMq6sznKhcwlcqMwZ6Qyn0jopClsYp4x1maAUnFa6llZolhfKaVrzBbne793G8DUA9mXrcfew6SAMWGZCc8GELuSE6j1qY0CM4Mpt9K2JY8louTNX_jVX_pibkpeHI0PVQv2b-1E1AdkeCMP231u_ASmugcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473414795</pqid></control><display><type>article</type><title>Single-cell systems analysis: decision geometry in outliers</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Abrahams, Lianne</creator><contributor>Wren, Jonathan</contributor><creatorcontrib>Abrahams, Lianne ; Wren, Jonathan</creatorcontrib><description>Abstract
Motivation
Anti-cancer therapeutics of the highest calibre currently focus on combinatorial targeting of specific oncoproteins and tumour suppressors. Clinical relapse depends upon intratumoral heterogeneity which serves as substrate variation during evolution of resistance to therapeutic regimens.
Results
The present review advocates single-cell systems biology as the optimal level of analysis for remediation of clinical relapse. Graph theory approaches to understanding decision-making in single cells may be abstracted one level further, to the geometry of decision-making in outlier cells, in order to define evolution-resistant cancer biomarkers. Systems biologists currently working with omics data are invited to consider phase portrait analysis as a mediator between graph theory and deep learning approaches. Perhaps counter-intuitively, the tangible clinical needs of cancer patients may depend upon the adoption of higher level mathematical abstractions of cancer biology.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa1078</identifier><identifier>PMID: 33367486</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Bioinformatics, 2021-07, Vol.37 (12), p.1747-1755</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c351t-a7b4e236c7284785e3462fa5fa305cf549c9af6acf2400ef767d5c471896f70d3</cites><orcidid>0000-0002-3112-6170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btaa1078$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33367486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wren, Jonathan</contributor><creatorcontrib>Abrahams, Lianne</creatorcontrib><title>Single-cell systems analysis: decision geometry in outliers</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Anti-cancer therapeutics of the highest calibre currently focus on combinatorial targeting of specific oncoproteins and tumour suppressors. Clinical relapse depends upon intratumoral heterogeneity which serves as substrate variation during evolution of resistance to therapeutic regimens.
Results
The present review advocates single-cell systems biology as the optimal level of analysis for remediation of clinical relapse. Graph theory approaches to understanding decision-making in single cells may be abstracted one level further, to the geometry of decision-making in outlier cells, in order to define evolution-resistant cancer biomarkers. Systems biologists currently working with omics data are invited to consider phase portrait analysis as a mediator between graph theory and deep learning approaches. Perhaps counter-intuitively, the tangible clinical needs of cancer patients may depend upon the adoption of higher level mathematical abstractions of cancer biology.
Supplementary information
Supplementary data are available at Bioinformatics online.</description><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEYmPwF6BHLmVJ89XCCU18SZM4AOcqTZ0pqG1G3B767-m0gcSNky35eW3rIeSK0RtGC76sfPCdC7E1vbe4rHpjGNX5EZkzoWiaUVkcTz1XOhU55TNyhvhJqWRCiFMy43yaiFzNyd2b7zYNpBaaJsERe2gxMZ1pRvR4m9RgPfrQJRsILfRxTHyXhKFvPEQ8JyfONAgXh7ogH48P76vndP369LK6X6eWS9anRlcCMq6sznKhcwlcqMwZ6Qyn0jopClsYp4x1maAUnFa6llZolhfKaVrzBbne793G8DUA9mXrcfew6SAMWGZCc8GELuSE6j1qY0CM4Mpt9K2JY8louTNX_jVX_pibkpeHI0PVQv2b-1E1AdkeCMP231u_ASmugcw</recordid><startdate>20210719</startdate><enddate>20210719</enddate><creator>Abrahams, Lianne</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3112-6170</orcidid></search><sort><creationdate>20210719</creationdate><title>Single-cell systems analysis: decision geometry in outliers</title><author>Abrahams, Lianne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-a7b4e236c7284785e3462fa5fa305cf549c9af6acf2400ef767d5c471896f70d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrahams, Lianne</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abrahams, Lianne</au><au>Wren, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell systems analysis: decision geometry in outliers</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2021-07-19</date><risdate>2021</risdate><volume>37</volume><issue>12</issue><spage>1747</spage><epage>1755</epage><pages>1747-1755</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Anti-cancer therapeutics of the highest calibre currently focus on combinatorial targeting of specific oncoproteins and tumour suppressors. Clinical relapse depends upon intratumoral heterogeneity which serves as substrate variation during evolution of resistance to therapeutic regimens.
Results
The present review advocates single-cell systems biology as the optimal level of analysis for remediation of clinical relapse. Graph theory approaches to understanding decision-making in single cells may be abstracted one level further, to the geometry of decision-making in outlier cells, in order to define evolution-resistant cancer biomarkers. Systems biologists currently working with omics data are invited to consider phase portrait analysis as a mediator between graph theory and deep learning approaches. Perhaps counter-intuitively, the tangible clinical needs of cancer patients may depend upon the adoption of higher level mathematical abstractions of cancer biology.
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33367486</pmid><doi>10.1093/bioinformatics/btaa1078</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3112-6170</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2021-07, Vol.37 (12), p.1747-1755 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_2473414795 |
source | Access via Oxford University Press (Open Access Collection) |
title | Single-cell systems analysis: decision geometry in outliers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20systems%20analysis:%20decision%20geometry%20in%20outliers&rft.jtitle=Bioinformatics&rft.au=Abrahams,%20Lianne&rft.date=2021-07-19&rft.volume=37&rft.issue=12&rft.spage=1747&rft.epage=1755&rft.pages=1747-1755&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa1078&rft_dat=%3Cproquest_TOX%3E2473414795%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473414795&rft_id=info:pmid/33367486&rft_oup_id=10.1093/bioinformatics/btaa1078&rfr_iscdi=true |