Single-cell systems analysis: decision geometry in outliers

Abstract Motivation Anti-cancer therapeutics of the highest calibre currently focus on combinatorial targeting of specific oncoproteins and tumour suppressors. Clinical relapse depends upon intratumoral heterogeneity which serves as substrate variation during evolution of resistance to therapeutic r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2021-07, Vol.37 (12), p.1747-1755
1. Verfasser: Abrahams, Lianne
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1755
container_issue 12
container_start_page 1747
container_title Bioinformatics
container_volume 37
creator Abrahams, Lianne
description Abstract Motivation Anti-cancer therapeutics of the highest calibre currently focus on combinatorial targeting of specific oncoproteins and tumour suppressors. Clinical relapse depends upon intratumoral heterogeneity which serves as substrate variation during evolution of resistance to therapeutic regimens. Results The present review advocates single-cell systems biology as the optimal level of analysis for remediation of clinical relapse. Graph theory approaches to understanding decision-making in single cells may be abstracted one level further, to the geometry of decision-making in outlier cells, in order to define evolution-resistant cancer biomarkers. Systems biologists currently working with omics data are invited to consider phase portrait analysis as a mediator between graph theory and deep learning approaches. Perhaps counter-intuitively, the tangible clinical needs of cancer patients may depend upon the adoption of higher level mathematical abstractions of cancer biology. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btaa1078
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473414795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa1078</oup_id><sourcerecordid>2473414795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-a7b4e236c7284785e3462fa5fa305cf549c9af6acf2400ef767d5c471896f70d3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEYmPwF6BHLmVJ89XCCU18SZM4AOcqTZ0pqG1G3B767-m0gcSNky35eW3rIeSK0RtGC76sfPCdC7E1vbe4rHpjGNX5EZkzoWiaUVkcTz1XOhU55TNyhvhJqWRCiFMy43yaiFzNyd2b7zYNpBaaJsERe2gxMZ1pRvR4m9RgPfrQJRsILfRxTHyXhKFvPEQ8JyfONAgXh7ogH48P76vndP369LK6X6eWS9anRlcCMq6sznKhcwlcqMwZ6Qyn0jopClsYp4x1maAUnFa6llZolhfKaVrzBbne793G8DUA9mXrcfew6SAMWGZCc8GELuSE6j1qY0CM4Mpt9K2JY8louTNX_jVX_pibkpeHI0PVQv2b-1E1AdkeCMP231u_ASmugcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473414795</pqid></control><display><type>article</type><title>Single-cell systems analysis: decision geometry in outliers</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Abrahams, Lianne</creator><contributor>Wren, Jonathan</contributor><creatorcontrib>Abrahams, Lianne ; Wren, Jonathan</creatorcontrib><description>Abstract Motivation Anti-cancer therapeutics of the highest calibre currently focus on combinatorial targeting of specific oncoproteins and tumour suppressors. Clinical relapse depends upon intratumoral heterogeneity which serves as substrate variation during evolution of resistance to therapeutic regimens. Results The present review advocates single-cell systems biology as the optimal level of analysis for remediation of clinical relapse. Graph theory approaches to understanding decision-making in single cells may be abstracted one level further, to the geometry of decision-making in outlier cells, in order to define evolution-resistant cancer biomarkers. Systems biologists currently working with omics data are invited to consider phase portrait analysis as a mediator between graph theory and deep learning approaches. Perhaps counter-intuitively, the tangible clinical needs of cancer patients may depend upon the adoption of higher level mathematical abstractions of cancer biology. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa1078</identifier><identifier>PMID: 33367486</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><ispartof>Bioinformatics, 2021-07, Vol.37 (12), p.1747-1755</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c351t-a7b4e236c7284785e3462fa5fa305cf549c9af6acf2400ef767d5c471896f70d3</cites><orcidid>0000-0002-3112-6170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btaa1078$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33367486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wren, Jonathan</contributor><creatorcontrib>Abrahams, Lianne</creatorcontrib><title>Single-cell systems analysis: decision geometry in outliers</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Anti-cancer therapeutics of the highest calibre currently focus on combinatorial targeting of specific oncoproteins and tumour suppressors. Clinical relapse depends upon intratumoral heterogeneity which serves as substrate variation during evolution of resistance to therapeutic regimens. Results The present review advocates single-cell systems biology as the optimal level of analysis for remediation of clinical relapse. Graph theory approaches to understanding decision-making in single cells may be abstracted one level further, to the geometry of decision-making in outlier cells, in order to define evolution-resistant cancer biomarkers. Systems biologists currently working with omics data are invited to consider phase portrait analysis as a mediator between graph theory and deep learning approaches. Perhaps counter-intuitively, the tangible clinical needs of cancer patients may depend upon the adoption of higher level mathematical abstractions of cancer biology. Supplementary information Supplementary data are available at Bioinformatics online.</description><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEYmPwF6BHLmVJ89XCCU18SZM4AOcqTZ0pqG1G3B767-m0gcSNky35eW3rIeSK0RtGC76sfPCdC7E1vbe4rHpjGNX5EZkzoWiaUVkcTz1XOhU55TNyhvhJqWRCiFMy43yaiFzNyd2b7zYNpBaaJsERe2gxMZ1pRvR4m9RgPfrQJRsILfRxTHyXhKFvPEQ8JyfONAgXh7ogH48P76vndP369LK6X6eWS9anRlcCMq6sznKhcwlcqMwZ6Qyn0jopClsYp4x1maAUnFa6llZolhfKaVrzBbne793G8DUA9mXrcfew6SAMWGZCc8GELuSE6j1qY0CM4Mpt9K2JY8louTNX_jVX_pibkpeHI0PVQv2b-1E1AdkeCMP231u_ASmugcw</recordid><startdate>20210719</startdate><enddate>20210719</enddate><creator>Abrahams, Lianne</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3112-6170</orcidid></search><sort><creationdate>20210719</creationdate><title>Single-cell systems analysis: decision geometry in outliers</title><author>Abrahams, Lianne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-a7b4e236c7284785e3462fa5fa305cf549c9af6acf2400ef767d5c471896f70d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrahams, Lianne</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abrahams, Lianne</au><au>Wren, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell systems analysis: decision geometry in outliers</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2021-07-19</date><risdate>2021</risdate><volume>37</volume><issue>12</issue><spage>1747</spage><epage>1755</epage><pages>1747-1755</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Anti-cancer therapeutics of the highest calibre currently focus on combinatorial targeting of specific oncoproteins and tumour suppressors. Clinical relapse depends upon intratumoral heterogeneity which serves as substrate variation during evolution of resistance to therapeutic regimens. Results The present review advocates single-cell systems biology as the optimal level of analysis for remediation of clinical relapse. Graph theory approaches to understanding decision-making in single cells may be abstracted one level further, to the geometry of decision-making in outlier cells, in order to define evolution-resistant cancer biomarkers. Systems biologists currently working with omics data are invited to consider phase portrait analysis as a mediator between graph theory and deep learning approaches. Perhaps counter-intuitively, the tangible clinical needs of cancer patients may depend upon the adoption of higher level mathematical abstractions of cancer biology. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33367486</pmid><doi>10.1093/bioinformatics/btaa1078</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3112-6170</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2021-07, Vol.37 (12), p.1747-1755
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_2473414795
source Access via Oxford University Press (Open Access Collection)
title Single-cell systems analysis: decision geometry in outliers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20systems%20analysis:%20decision%20geometry%20in%20outliers&rft.jtitle=Bioinformatics&rft.au=Abrahams,%20Lianne&rft.date=2021-07-19&rft.volume=37&rft.issue=12&rft.spage=1747&rft.epage=1755&rft.pages=1747-1755&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btaa1078&rft_dat=%3Cproquest_TOX%3E2473414795%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473414795&rft_id=info:pmid/33367486&rft_oup_id=10.1093/bioinformatics/btaa1078&rfr_iscdi=true