Efficient and automated initial value estimation in digital image correlation for large displacement, rotation, and scaling

The initial value estimation for seed point is the first step in digital image correlation calculation. Among the existing algorithms, the Fourier-Mellin transform-based cross correlation (FMT-CC) algorithm is one of the most efficient and robust owing to its rotation- and scale-invariance. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2020-11, Vol.59 (33), p.10523-10531
Hauptverfasser: Fang, Zheng, Gao, Yue, Gao, Zeren, Liu, Yang, Wang, Yaru, Su, Yong, Zhang, Qingchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10531
container_issue 33
container_start_page 10523
container_title Applied optics (2004)
container_volume 59
creator Fang, Zheng
Gao, Yue
Gao, Zeren
Liu, Yang
Wang, Yaru
Su, Yong
Zhang, Qingchuan
description The initial value estimation for seed point is the first step in digital image correlation calculation. Among the existing algorithms, the Fourier-Mellin transform-based cross correlation (FMT-CC) algorithm is one of the most efficient and robust owing to its rotation- and scale-invariance. However, when the displacement is large (more than a hundred pixels), the FMT-CC algorithm fails. In this paper, an automated and efficient initial value estimation method based on an FMT-CC algorithm is presented to deal with large displacement, large rotation, and large isotropic scaling. The relationship between subset size and the maximal displacement in the FMT-CC algorithm is studied, and a strategy of setting the subset size according to the estimated displacement is proposed to improve the robustness of the FMT-CC algorithm. In addition, in cases of large displacement, a multi-scale search method is proposed to improve efficiency. The experimental results show that the proposed methods can realize rapid and automated initial value estimation even under conditions of large displacement, large rotation, and large isotropic scaling. The computational efficiency of the multi-scale search method is about one order of magnitude higher than the traditional FMT-CC method.
doi_str_mv 10.1364/AO.405551
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473412188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473412188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-f4794173f272003a82f001dfd78d9b328e33419acee72e9fbda8754bd96b83863</originalsourceid><addsrcrecordid>eNpdkUtLxDAUhYMoOj4W_gEJuFGwY_NokyyHYXyAMBsFdyVtkiGSacakFcQ_79VRF64S7vk493EQOiXllLCaX8-WU15WVUV20ISSqioYqatdNIGvKgiVzwfoMOeXsmQVV2IfHTDGaqKkmKCPhXO-87YfsO4N1uMQ13qwBvveD14H_KbDaLHNg4e6jz0I2PiVH0CD0sriLqZkw1Z0MeGgE1SNz5ugO7sG6yuc4vANXH13yZ0Ovl8doz2nQ7YnP-8RerpZPM7viofl7f189lB0jLChcFwoTgRzVFBYQUvqypIYZ4Q0qmVUWsY4UdDLCmqVa42WouKtUXUrmazZEbrY-m5SfB1hlWbtc2dD0L2NY24oF2BAiZSAnv9DX-KYepjui-JwVyUVUJdbqksx52Rds0lwi_TekLL5SqSZLZttIsCe_TiO7dqaP_I3AvYJi9iGfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474316989</pqid></control><display><type>article</type><title>Efficient and automated initial value estimation in digital image correlation for large displacement, rotation, and scaling</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Fang, Zheng ; Gao, Yue ; Gao, Zeren ; Liu, Yang ; Wang, Yaru ; Su, Yong ; Zhang, Qingchuan</creator><creatorcontrib>Fang, Zheng ; Gao, Yue ; Gao, Zeren ; Liu, Yang ; Wang, Yaru ; Su, Yong ; Zhang, Qingchuan</creatorcontrib><description>The initial value estimation for seed point is the first step in digital image correlation calculation. Among the existing algorithms, the Fourier-Mellin transform-based cross correlation (FMT-CC) algorithm is one of the most efficient and robust owing to its rotation- and scale-invariance. However, when the displacement is large (more than a hundred pixels), the FMT-CC algorithm fails. In this paper, an automated and efficient initial value estimation method based on an FMT-CC algorithm is presented to deal with large displacement, large rotation, and large isotropic scaling. The relationship between subset size and the maximal displacement in the FMT-CC algorithm is studied, and a strategy of setting the subset size according to the estimated displacement is proposed to improve the robustness of the FMT-CC algorithm. In addition, in cases of large displacement, a multi-scale search method is proposed to improve efficiency. The experimental results show that the proposed methods can realize rapid and automated initial value estimation even under conditions of large displacement, large rotation, and large isotropic scaling. The computational efficiency of the multi-scale search method is about one order of magnitude higher than the traditional FMT-CC method.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.405551</identifier><identifier>PMID: 33361987</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Algorithms ; Automation ; Cross correlation ; Digital imaging ; Displacement ; Mellin transforms ; Rotation ; Scaling ; Search methods</subject><ispartof>Applied optics (2004), 2020-11, Vol.59 (33), p.10523-10531</ispartof><rights>Copyright Optical Society of America Nov 20, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-f4794173f272003a82f001dfd78d9b328e33419acee72e9fbda8754bd96b83863</citedby><cites>FETCH-LOGICAL-c313t-f4794173f272003a82f001dfd78d9b328e33419acee72e9fbda8754bd96b83863</cites><orcidid>0000-0001-8359-3363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33361987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Zheng</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Gao, Zeren</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Wang, Yaru</creatorcontrib><creatorcontrib>Su, Yong</creatorcontrib><creatorcontrib>Zhang, Qingchuan</creatorcontrib><title>Efficient and automated initial value estimation in digital image correlation for large displacement, rotation, and scaling</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>The initial value estimation for seed point is the first step in digital image correlation calculation. Among the existing algorithms, the Fourier-Mellin transform-based cross correlation (FMT-CC) algorithm is one of the most efficient and robust owing to its rotation- and scale-invariance. However, when the displacement is large (more than a hundred pixels), the FMT-CC algorithm fails. In this paper, an automated and efficient initial value estimation method based on an FMT-CC algorithm is presented to deal with large displacement, large rotation, and large isotropic scaling. The relationship between subset size and the maximal displacement in the FMT-CC algorithm is studied, and a strategy of setting the subset size according to the estimated displacement is proposed to improve the robustness of the FMT-CC algorithm. In addition, in cases of large displacement, a multi-scale search method is proposed to improve efficiency. The experimental results show that the proposed methods can realize rapid and automated initial value estimation even under conditions of large displacement, large rotation, and large isotropic scaling. The computational efficiency of the multi-scale search method is about one order of magnitude higher than the traditional FMT-CC method.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Cross correlation</subject><subject>Digital imaging</subject><subject>Displacement</subject><subject>Mellin transforms</subject><subject>Rotation</subject><subject>Scaling</subject><subject>Search methods</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLxDAUhYMoOj4W_gEJuFGwY_NokyyHYXyAMBsFdyVtkiGSacakFcQ_79VRF64S7vk493EQOiXllLCaX8-WU15WVUV20ISSqioYqatdNIGvKgiVzwfoMOeXsmQVV2IfHTDGaqKkmKCPhXO-87YfsO4N1uMQ13qwBvveD14H_KbDaLHNg4e6jz0I2PiVH0CD0sriLqZkw1Z0MeGgE1SNz5ugO7sG6yuc4vANXH13yZ0Ovl8doz2nQ7YnP-8RerpZPM7viofl7f189lB0jLChcFwoTgRzVFBYQUvqypIYZ4Q0qmVUWsY4UdDLCmqVa42WouKtUXUrmazZEbrY-m5SfB1hlWbtc2dD0L2NY24oF2BAiZSAnv9DX-KYepjui-JwVyUVUJdbqksx52Rds0lwi_TekLL5SqSZLZttIsCe_TiO7dqaP_I3AvYJi9iGfw</recordid><startdate>20201120</startdate><enddate>20201120</enddate><creator>Fang, Zheng</creator><creator>Gao, Yue</creator><creator>Gao, Zeren</creator><creator>Liu, Yang</creator><creator>Wang, Yaru</creator><creator>Su, Yong</creator><creator>Zhang, Qingchuan</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8359-3363</orcidid></search><sort><creationdate>20201120</creationdate><title>Efficient and automated initial value estimation in digital image correlation for large displacement, rotation, and scaling</title><author>Fang, Zheng ; Gao, Yue ; Gao, Zeren ; Liu, Yang ; Wang, Yaru ; Su, Yong ; Zhang, Qingchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-f4794173f272003a82f001dfd78d9b328e33419acee72e9fbda8754bd96b83863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Cross correlation</topic><topic>Digital imaging</topic><topic>Displacement</topic><topic>Mellin transforms</topic><topic>Rotation</topic><topic>Scaling</topic><topic>Search methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Zheng</creatorcontrib><creatorcontrib>Gao, Yue</creatorcontrib><creatorcontrib>Gao, Zeren</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Wang, Yaru</creatorcontrib><creatorcontrib>Su, Yong</creatorcontrib><creatorcontrib>Zhang, Qingchuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Zheng</au><au>Gao, Yue</au><au>Gao, Zeren</au><au>Liu, Yang</au><au>Wang, Yaru</au><au>Su, Yong</au><au>Zhang, Qingchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and automated initial value estimation in digital image correlation for large displacement, rotation, and scaling</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2020-11-20</date><risdate>2020</risdate><volume>59</volume><issue>33</issue><spage>10523</spage><epage>10531</epage><pages>10523-10531</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>The initial value estimation for seed point is the first step in digital image correlation calculation. Among the existing algorithms, the Fourier-Mellin transform-based cross correlation (FMT-CC) algorithm is one of the most efficient and robust owing to its rotation- and scale-invariance. However, when the displacement is large (more than a hundred pixels), the FMT-CC algorithm fails. In this paper, an automated and efficient initial value estimation method based on an FMT-CC algorithm is presented to deal with large displacement, large rotation, and large isotropic scaling. The relationship between subset size and the maximal displacement in the FMT-CC algorithm is studied, and a strategy of setting the subset size according to the estimated displacement is proposed to improve the robustness of the FMT-CC algorithm. In addition, in cases of large displacement, a multi-scale search method is proposed to improve efficiency. The experimental results show that the proposed methods can realize rapid and automated initial value estimation even under conditions of large displacement, large rotation, and large isotropic scaling. The computational efficiency of the multi-scale search method is about one order of magnitude higher than the traditional FMT-CC method.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>33361987</pmid><doi>10.1364/AO.405551</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8359-3363</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2020-11, Vol.59 (33), p.10523-10531
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2473412188
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Algorithms
Automation
Cross correlation
Digital imaging
Displacement
Mellin transforms
Rotation
Scaling
Search methods
title Efficient and automated initial value estimation in digital image correlation for large displacement, rotation, and scaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20automated%20initial%20value%20estimation%20in%20digital%20image%20correlation%20for%20large%20displacement,%20rotation,%20and%20scaling&rft.jtitle=Applied%20optics%20(2004)&rft.au=Fang,%20Zheng&rft.date=2020-11-20&rft.volume=59&rft.issue=33&rft.spage=10523&rft.epage=10531&rft.pages=10523-10531&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.405551&rft_dat=%3Cproquest_cross%3E2473412188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474316989&rft_id=info:pmid/33361987&rfr_iscdi=true