GPU-based fast processing for a distributed acoustic sensor using an LFM pulse
We carried out a fast processing investigation based on a graphics processing unit (GPU) for a distributed acoustic sensor using a linear frequency modulation pulse. The moving window cross-correlation calculations are realized on the GPU, which makes use of parallel computing. We analyzed the effec...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2020-12, Vol.59 (35), p.11098-11103 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11103 |
---|---|
container_issue | 35 |
container_start_page | 11098 |
container_title | Applied optics (2004) |
container_volume | 59 |
creator | Wang, Shuanghao Jiang, Junfeng Wang, Shuang Ma, Zhe Xu, Tianhua Ding, Zhenyang Lv, Zhankun Liu, Tiegen |
description | We carried out a fast processing investigation based on a graphics processing unit (GPU) for a distributed acoustic sensor using a linear frequency modulation pulse. The moving window cross-correlation calculations are realized on the GPU, which makes use of parallel computing. We analyzed the effect of the thread number in a block on the GPU streaming multiprocessor utilization efficiency and then compared the acceleration under different calculation scales. By maximizing the streaming multiprocessor utilization efficiency and large calculation scale, a maximum acceleration ratio of 86.01 was obtained. |
doi_str_mv | 10.1364/AO.412184 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473411744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473411744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-ba3f3fab95cae04b62076d027926d911c1b05a82964ed31f3e188d2c474fdfce3</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgiq3Vg39AAl70sDWTyX7kWIqtQrUeLHhbsvmQLe1uTXYP_ntTqx48zUAeJi8vIZfAxoCZuJssxwI4FOKIDDmkaYKQpcdkGFeZAC_eBuQshDVjmAqZn5IBImYgsRiS5_nLKqlUsIY6FTq68622IdTNO3Wtp4qaOnS-rvouCqXbPnS1psE2Ib723041dDF7ort-E-w5OXEqzoufOSKr2f3r9CFZLOeP08ki0QjYxQ_RoVOVTLWyTFQZZ3lmGM8lz4wE0FCxVBVcZsIaBIcWisJwLXLhjNMWR-TmcDfm_eht6MptHbTdbFRjY8aSixwFQC5EpNf_6LrtfRPT7ZVAhjmwqG4PSvs2BG9dufP1VvnPEli5L7mcLMtDydFe_Vzsq601f_K3VfwC14l1SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2474303710</pqid></control><display><type>article</type><title>GPU-based fast processing for a distributed acoustic sensor using an LFM pulse</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Wang, Shuanghao ; Jiang, Junfeng ; Wang, Shuang ; Ma, Zhe ; Xu, Tianhua ; Ding, Zhenyang ; Lv, Zhankun ; Liu, Tiegen</creator><creatorcontrib>Wang, Shuanghao ; Jiang, Junfeng ; Wang, Shuang ; Ma, Zhe ; Xu, Tianhua ; Ding, Zhenyang ; Lv, Zhankun ; Liu, Tiegen</creatorcontrib><description>We carried out a fast processing investigation based on a graphics processing unit (GPU) for a distributed acoustic sensor using a linear frequency modulation pulse. The moving window cross-correlation calculations are realized on the GPU, which makes use of parallel computing. We analyzed the effect of the thread number in a block on the GPU streaming multiprocessor utilization efficiency and then compared the acceleration under different calculation scales. By maximizing the streaming multiprocessor utilization efficiency and large calculation scale, a maximum acceleration ratio of 86.01 was obtained.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.412184</identifier><identifier>PMID: 33361938</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Frequency modulation ; Graphics processing units ; Mathematical analysis ; Multiprocessing</subject><ispartof>Applied optics (2004), 2020-12, Vol.59 (35), p.11098-11103</ispartof><rights>Copyright Optical Society of America Dec 10, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-ba3f3fab95cae04b62076d027926d911c1b05a82964ed31f3e188d2c474fdfce3</citedby><cites>FETCH-LOGICAL-c313t-ba3f3fab95cae04b62076d027926d911c1b05a82964ed31f3e188d2c474fdfce3</cites><orcidid>0000-0001-9249-2214 ; 0000-0002-0483-477X ; 0000-0003-0393-8451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33361938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shuanghao</creatorcontrib><creatorcontrib>Jiang, Junfeng</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Ma, Zhe</creatorcontrib><creatorcontrib>Xu, Tianhua</creatorcontrib><creatorcontrib>Ding, Zhenyang</creatorcontrib><creatorcontrib>Lv, Zhankun</creatorcontrib><creatorcontrib>Liu, Tiegen</creatorcontrib><title>GPU-based fast processing for a distributed acoustic sensor using an LFM pulse</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>We carried out a fast processing investigation based on a graphics processing unit (GPU) for a distributed acoustic sensor using a linear frequency modulation pulse. The moving window cross-correlation calculations are realized on the GPU, which makes use of parallel computing. We analyzed the effect of the thread number in a block on the GPU streaming multiprocessor utilization efficiency and then compared the acceleration under different calculation scales. By maximizing the streaming multiprocessor utilization efficiency and large calculation scale, a maximum acceleration ratio of 86.01 was obtained.</description><subject>Frequency modulation</subject><subject>Graphics processing units</subject><subject>Mathematical analysis</subject><subject>Multiprocessing</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LAzEQBuAgiq3Vg39AAl70sDWTyX7kWIqtQrUeLHhbsvmQLe1uTXYP_ntTqx48zUAeJi8vIZfAxoCZuJssxwI4FOKIDDmkaYKQpcdkGFeZAC_eBuQshDVjmAqZn5IBImYgsRiS5_nLKqlUsIY6FTq68622IdTNO3Wtp4qaOnS-rvouCqXbPnS1psE2Ib723041dDF7ort-E-w5OXEqzoufOSKr2f3r9CFZLOeP08ki0QjYxQ_RoVOVTLWyTFQZZ3lmGM8lz4wE0FCxVBVcZsIaBIcWisJwLXLhjNMWR-TmcDfm_eht6MptHbTdbFRjY8aSixwFQC5EpNf_6LrtfRPT7ZVAhjmwqG4PSvs2BG9dufP1VvnPEli5L7mcLMtDydFe_Vzsq601f_K3VfwC14l1SQ</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>Wang, Shuanghao</creator><creator>Jiang, Junfeng</creator><creator>Wang, Shuang</creator><creator>Ma, Zhe</creator><creator>Xu, Tianhua</creator><creator>Ding, Zhenyang</creator><creator>Lv, Zhankun</creator><creator>Liu, Tiegen</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9249-2214</orcidid><orcidid>https://orcid.org/0000-0002-0483-477X</orcidid><orcidid>https://orcid.org/0000-0003-0393-8451</orcidid></search><sort><creationdate>20201210</creationdate><title>GPU-based fast processing for a distributed acoustic sensor using an LFM pulse</title><author>Wang, Shuanghao ; Jiang, Junfeng ; Wang, Shuang ; Ma, Zhe ; Xu, Tianhua ; Ding, Zhenyang ; Lv, Zhankun ; Liu, Tiegen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-ba3f3fab95cae04b62076d027926d911c1b05a82964ed31f3e188d2c474fdfce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Frequency modulation</topic><topic>Graphics processing units</topic><topic>Mathematical analysis</topic><topic>Multiprocessing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuanghao</creatorcontrib><creatorcontrib>Jiang, Junfeng</creatorcontrib><creatorcontrib>Wang, Shuang</creatorcontrib><creatorcontrib>Ma, Zhe</creatorcontrib><creatorcontrib>Xu, Tianhua</creatorcontrib><creatorcontrib>Ding, Zhenyang</creatorcontrib><creatorcontrib>Lv, Zhankun</creatorcontrib><creatorcontrib>Liu, Tiegen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuanghao</au><au>Jiang, Junfeng</au><au>Wang, Shuang</au><au>Ma, Zhe</au><au>Xu, Tianhua</au><au>Ding, Zhenyang</au><au>Lv, Zhankun</au><au>Liu, Tiegen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPU-based fast processing for a distributed acoustic sensor using an LFM pulse</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2020-12-10</date><risdate>2020</risdate><volume>59</volume><issue>35</issue><spage>11098</spage><epage>11103</epage><pages>11098-11103</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>We carried out a fast processing investigation based on a graphics processing unit (GPU) for a distributed acoustic sensor using a linear frequency modulation pulse. The moving window cross-correlation calculations are realized on the GPU, which makes use of parallel computing. We analyzed the effect of the thread number in a block on the GPU streaming multiprocessor utilization efficiency and then compared the acceleration under different calculation scales. By maximizing the streaming multiprocessor utilization efficiency and large calculation scale, a maximum acceleration ratio of 86.01 was obtained.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>33361938</pmid><doi>10.1364/AO.412184</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9249-2214</orcidid><orcidid>https://orcid.org/0000-0002-0483-477X</orcidid><orcidid>https://orcid.org/0000-0003-0393-8451</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2020-12, Vol.59 (35), p.11098-11103 |
issn | 1559-128X 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_2473411744 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Frequency modulation Graphics processing units Mathematical analysis Multiprocessing |
title | GPU-based fast processing for a distributed acoustic sensor using an LFM pulse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPU-based%20fast%20processing%20for%20a%20distributed%20acoustic%20sensor%20using%20an%20LFM%20pulse&rft.jtitle=Applied%20optics%20(2004)&rft.au=Wang,%20Shuanghao&rft.date=2020-12-10&rft.volume=59&rft.issue=35&rft.spage=11098&rft.epage=11103&rft.pages=11098-11103&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.412184&rft_dat=%3Cproquest_cross%3E2473411744%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2474303710&rft_id=info:pmid/33361938&rfr_iscdi=true |