Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine

Although the automatic synthesis of molecules has been established, each reaction class uses bespoke hardware. This means that the connection of multi-step syntheses in a single machine to run many different protocols and reactions is not possible, as manual intervention is required. Here we show ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2021-01, Vol.13 (1), p.63-69
Hauptverfasser: Angelone, Davide, Hammer, Alexander J. S., Rohrbach, Simon, Krambeck, Stefanie, Granda, Jarosław M., Wolf, Jakob, Zalesskiy, Sergey, Chisholm, Greig, Cronin, Leroy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 63
container_title Nature chemistry
container_volume 13
creator Angelone, Davide
Hammer, Alexander J. S.
Rohrbach, Simon
Krambeck, Stefanie
Granda, Jarosław M.
Wolf, Jakob
Zalesskiy, Sergey
Chisholm, Greig
Cronin, Leroy
description Although the automatic synthesis of molecules has been established, each reaction class uses bespoke hardware. This means that the connection of multi-step syntheses in a single machine to run many different protocols and reactions is not possible, as manual intervention is required. Here we show how the Chemputer synthesis robot can be programmed to perform many different reactions, including solid-phase peptide synthesis, iterative cross-coupling and accessing reactive, unstable diazirines in a single, unified system with high yields and purity. Developing universal and modular hardware that can be automated using one software system makes a wide variety of batch chemistry accessible. This is shown by our system, which performed around 8,500 operations while reusing only 22 distinct steps in 10 unique modules, with the code able to access 17 different reactions. We also demonstrate a complex convergent robotic synthesis of a peptide reacted with a diazirine—a process requiring 12 synthetic steps. Automated synthesis technologies are often highly specialized, focusing only on a narrow set of reaction classes. Now, solid-phase peptide synthesis, iterative Suzuki–Miyaura cross-coupling and diazirine chemistry have all been automated using the same universal platform architecture. A convergent 12-step synthesis demonstrates the utility of the reported Chemputer system.
doi_str_mv 10.1038/s41557-020-00596-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473405724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473198241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-b080282cc28e33d48846dc2695cccb24ab41d759170047f18d9a6e99ba3733ec3</originalsourceid><addsrcrecordid>eNp9kc1qGzEURkVpqB23L9BFEHTTzTT6HY2WxSRNwNBNuhYazbUtM9I40kzAb1_FdlzIoisJdM6ny_0Q-krJD0p4c5sFlVJVhJGKEKnrSn9Ac6qkrAQX-uPlzskMXee8I6SWnNaf0IxzLrlWdI665RBfIG0gOsDDGoepH_2-B5wPcdzC6B3e22Q7vwkZ-4gtnqIvQrZ9f8D7NGySDcG2xXBbCN7Z_qxmn3GwbusjfEZXa9tn-HI-F-jP_d3T8qFa_f71uPy5qpyQ9Vi1pCGsYc6xBjjvRNOIunOs1tI51zJhW0E7JTVVhAi1pk2nbQ1at5YrzsHxBfp-yi1zPU-QRxN8dtD3NsIwZcOE4oJIxURBv71Dd8OUYpnuSFHdMEELxU6US0POCdZmn3yw6WAoMa8dmFMHpnRgjh0YXaSbc_TUBuguytvSC8BPQC5PcQPp39__if0LrMSSlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473198241</pqid></control><display><type>article</type><title>Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Angelone, Davide ; Hammer, Alexander J. S. ; Rohrbach, Simon ; Krambeck, Stefanie ; Granda, Jarosław M. ; Wolf, Jakob ; Zalesskiy, Sergey ; Chisholm, Greig ; Cronin, Leroy</creator><creatorcontrib>Angelone, Davide ; Hammer, Alexander J. S. ; Rohrbach, Simon ; Krambeck, Stefanie ; Granda, Jarosław M. ; Wolf, Jakob ; Zalesskiy, Sergey ; Chisholm, Greig ; Cronin, Leroy</creatorcontrib><description>Although the automatic synthesis of molecules has been established, each reaction class uses bespoke hardware. This means that the connection of multi-step syntheses in a single machine to run many different protocols and reactions is not possible, as manual intervention is required. Here we show how the Chemputer synthesis robot can be programmed to perform many different reactions, including solid-phase peptide synthesis, iterative cross-coupling and accessing reactive, unstable diazirines in a single, unified system with high yields and purity. Developing universal and modular hardware that can be automated using one software system makes a wide variety of batch chemistry accessible. This is shown by our system, which performed around 8,500 operations while reusing only 22 distinct steps in 10 unique modules, with the code able to access 17 different reactions. We also demonstrate a complex convergent robotic synthesis of a peptide reacted with a diazirine—a process requiring 12 synthetic steps. Automated synthesis technologies are often highly specialized, focusing only on a narrow set of reaction classes. Now, solid-phase peptide synthesis, iterative Suzuki–Miyaura cross-coupling and diazirine chemistry have all been automated using the same universal platform architecture. A convergent 12-step synthesis demonstrates the utility of the reported Chemputer system.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-020-00596-9</identifier><identifier>PMID: 33353971</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403/933 ; 639/638/549/973 ; 639/638/898 ; 639/638/905 ; Analytical Chemistry ; Automation ; Biochemistry ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Convergence ; Coupling (molecular) ; Cross coupling ; Hardware ; Inorganic Chemistry ; Organic Chemistry ; Peptide synthesis ; Peptides ; Physical Chemistry ; Solid phases</subject><ispartof>Nature chemistry, 2021-01, Vol.13 (1), p.63-69</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-b080282cc28e33d48846dc2695cccb24ab41d759170047f18d9a6e99ba3733ec3</citedby><cites>FETCH-LOGICAL-c456t-b080282cc28e33d48846dc2695cccb24ab41d759170047f18d9a6e99ba3733ec3</cites><orcidid>0000-0002-1007-1553 ; 0000-0002-5058-7669 ; 0000-0003-0201-2745 ; 0000-0002-5212-8239 ; 0000-0002-4003-346X ; 0000-0001-8879-907X ; 0000-0001-8035-5757 ; 0000-0002-7796-2780 ; 0000-0002-0198-6225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-020-00596-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-020-00596-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33353971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Angelone, Davide</creatorcontrib><creatorcontrib>Hammer, Alexander J. S.</creatorcontrib><creatorcontrib>Rohrbach, Simon</creatorcontrib><creatorcontrib>Krambeck, Stefanie</creatorcontrib><creatorcontrib>Granda, Jarosław M.</creatorcontrib><creatorcontrib>Wolf, Jakob</creatorcontrib><creatorcontrib>Zalesskiy, Sergey</creatorcontrib><creatorcontrib>Chisholm, Greig</creatorcontrib><creatorcontrib>Cronin, Leroy</creatorcontrib><title>Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Although the automatic synthesis of molecules has been established, each reaction class uses bespoke hardware. This means that the connection of multi-step syntheses in a single machine to run many different protocols and reactions is not possible, as manual intervention is required. Here we show how the Chemputer synthesis robot can be programmed to perform many different reactions, including solid-phase peptide synthesis, iterative cross-coupling and accessing reactive, unstable diazirines in a single, unified system with high yields and purity. Developing universal and modular hardware that can be automated using one software system makes a wide variety of batch chemistry accessible. This is shown by our system, which performed around 8,500 operations while reusing only 22 distinct steps in 10 unique modules, with the code able to access 17 different reactions. We also demonstrate a complex convergent robotic synthesis of a peptide reacted with a diazirine—a process requiring 12 synthetic steps. Automated synthesis technologies are often highly specialized, focusing only on a narrow set of reaction classes. Now, solid-phase peptide synthesis, iterative Suzuki–Miyaura cross-coupling and diazirine chemistry have all been automated using the same universal platform architecture. A convergent 12-step synthesis demonstrates the utility of the reported Chemputer system.</description><subject>639/638/403/933</subject><subject>639/638/549/973</subject><subject>639/638/898</subject><subject>639/638/905</subject><subject>Analytical Chemistry</subject><subject>Automation</subject><subject>Biochemistry</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Convergence</subject><subject>Coupling (molecular)</subject><subject>Cross coupling</subject><subject>Hardware</subject><subject>Inorganic Chemistry</subject><subject>Organic Chemistry</subject><subject>Peptide synthesis</subject><subject>Peptides</subject><subject>Physical Chemistry</subject><subject>Solid phases</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1qGzEURkVpqB23L9BFEHTTzTT6HY2WxSRNwNBNuhYazbUtM9I40kzAb1_FdlzIoisJdM6ny_0Q-krJD0p4c5sFlVJVhJGKEKnrSn9Ac6qkrAQX-uPlzskMXee8I6SWnNaf0IxzLrlWdI665RBfIG0gOsDDGoepH_2-B5wPcdzC6B3e22Q7vwkZ-4gtnqIvQrZ9f8D7NGySDcG2xXBbCN7Z_qxmn3GwbusjfEZXa9tn-HI-F-jP_d3T8qFa_f71uPy5qpyQ9Vi1pCGsYc6xBjjvRNOIunOs1tI51zJhW0E7JTVVhAi1pk2nbQ1at5YrzsHxBfp-yi1zPU-QRxN8dtD3NsIwZcOE4oJIxURBv71Dd8OUYpnuSFHdMEELxU6US0POCdZmn3yw6WAoMa8dmFMHpnRgjh0YXaSbc_TUBuguytvSC8BPQC5PcQPp39__if0LrMSSlg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Angelone, Davide</creator><creator>Hammer, Alexander J. S.</creator><creator>Rohrbach, Simon</creator><creator>Krambeck, Stefanie</creator><creator>Granda, Jarosław M.</creator><creator>Wolf, Jakob</creator><creator>Zalesskiy, Sergey</creator><creator>Chisholm, Greig</creator><creator>Cronin, Leroy</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1007-1553</orcidid><orcidid>https://orcid.org/0000-0002-5058-7669</orcidid><orcidid>https://orcid.org/0000-0003-0201-2745</orcidid><orcidid>https://orcid.org/0000-0002-5212-8239</orcidid><orcidid>https://orcid.org/0000-0002-4003-346X</orcidid><orcidid>https://orcid.org/0000-0001-8879-907X</orcidid><orcidid>https://orcid.org/0000-0001-8035-5757</orcidid><orcidid>https://orcid.org/0000-0002-7796-2780</orcidid><orcidid>https://orcid.org/0000-0002-0198-6225</orcidid></search><sort><creationdate>20210101</creationdate><title>Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine</title><author>Angelone, Davide ; Hammer, Alexander J. S. ; Rohrbach, Simon ; Krambeck, Stefanie ; Granda, Jarosław M. ; Wolf, Jakob ; Zalesskiy, Sergey ; Chisholm, Greig ; Cronin, Leroy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-b080282cc28e33d48846dc2695cccb24ab41d759170047f18d9a6e99ba3733ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/403/933</topic><topic>639/638/549/973</topic><topic>639/638/898</topic><topic>639/638/905</topic><topic>Analytical Chemistry</topic><topic>Automation</topic><topic>Biochemistry</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Convergence</topic><topic>Coupling (molecular)</topic><topic>Cross coupling</topic><topic>Hardware</topic><topic>Inorganic Chemistry</topic><topic>Organic Chemistry</topic><topic>Peptide synthesis</topic><topic>Peptides</topic><topic>Physical Chemistry</topic><topic>Solid phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angelone, Davide</creatorcontrib><creatorcontrib>Hammer, Alexander J. S.</creatorcontrib><creatorcontrib>Rohrbach, Simon</creatorcontrib><creatorcontrib>Krambeck, Stefanie</creatorcontrib><creatorcontrib>Granda, Jarosław M.</creatorcontrib><creatorcontrib>Wolf, Jakob</creatorcontrib><creatorcontrib>Zalesskiy, Sergey</creatorcontrib><creatorcontrib>Chisholm, Greig</creatorcontrib><creatorcontrib>Cronin, Leroy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angelone, Davide</au><au>Hammer, Alexander J. S.</au><au>Rohrbach, Simon</au><au>Krambeck, Stefanie</au><au>Granda, Jarosław M.</au><au>Wolf, Jakob</au><au>Zalesskiy, Sergey</au><au>Chisholm, Greig</au><au>Cronin, Leroy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>63</spage><epage>69</epage><pages>63-69</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Although the automatic synthesis of molecules has been established, each reaction class uses bespoke hardware. This means that the connection of multi-step syntheses in a single machine to run many different protocols and reactions is not possible, as manual intervention is required. Here we show how the Chemputer synthesis robot can be programmed to perform many different reactions, including solid-phase peptide synthesis, iterative cross-coupling and accessing reactive, unstable diazirines in a single, unified system with high yields and purity. Developing universal and modular hardware that can be automated using one software system makes a wide variety of batch chemistry accessible. This is shown by our system, which performed around 8,500 operations while reusing only 22 distinct steps in 10 unique modules, with the code able to access 17 different reactions. We also demonstrate a complex convergent robotic synthesis of a peptide reacted with a diazirine—a process requiring 12 synthetic steps. Automated synthesis technologies are often highly specialized, focusing only on a narrow set of reaction classes. Now, solid-phase peptide synthesis, iterative Suzuki–Miyaura cross-coupling and diazirine chemistry have all been automated using the same universal platform architecture. A convergent 12-step synthesis demonstrates the utility of the reported Chemputer system.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33353971</pmid><doi>10.1038/s41557-020-00596-9</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1007-1553</orcidid><orcidid>https://orcid.org/0000-0002-5058-7669</orcidid><orcidid>https://orcid.org/0000-0003-0201-2745</orcidid><orcidid>https://orcid.org/0000-0002-5212-8239</orcidid><orcidid>https://orcid.org/0000-0002-4003-346X</orcidid><orcidid>https://orcid.org/0000-0001-8879-907X</orcidid><orcidid>https://orcid.org/0000-0001-8035-5757</orcidid><orcidid>https://orcid.org/0000-0002-7796-2780</orcidid><orcidid>https://orcid.org/0000-0002-0198-6225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2021-01, Vol.13 (1), p.63-69
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_2473405724
source Springer Nature - Complete Springer Journals; Nature
subjects 639/638/403/933
639/638/549/973
639/638/898
639/638/905
Analytical Chemistry
Automation
Biochemistry
Chemical synthesis
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Convergence
Coupling (molecular)
Cross coupling
Hardware
Inorganic Chemistry
Organic Chemistry
Peptide synthesis
Peptides
Physical Chemistry
Solid phases
title Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20multiple%20synthetic%20paradigms%20in%20a%20universally%20programmable%20chemical%20synthesis%20machine&rft.jtitle=Nature%20chemistry&rft.au=Angelone,%20Davide&rft.date=2021-01-01&rft.volume=13&rft.issue=1&rft.spage=63&rft.epage=69&rft.pages=63-69&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-020-00596-9&rft_dat=%3Cproquest_cross%3E2473198241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473198241&rft_id=info:pmid/33353971&rfr_iscdi=true