Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine
Although the automatic synthesis of molecules has been established, each reaction class uses bespoke hardware. This means that the connection of multi-step syntheses in a single machine to run many different protocols and reactions is not possible, as manual intervention is required. Here we show ho...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2021-01, Vol.13 (1), p.63-69 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | Nature chemistry |
container_volume | 13 |
creator | Angelone, Davide Hammer, Alexander J. S. Rohrbach, Simon Krambeck, Stefanie Granda, Jarosław M. Wolf, Jakob Zalesskiy, Sergey Chisholm, Greig Cronin, Leroy |
description | Although the automatic synthesis of molecules has been established, each reaction class uses bespoke hardware. This means that the connection of multi-step syntheses in a single machine to run many different protocols and reactions is not possible, as manual intervention is required. Here we show how the Chemputer synthesis robot can be programmed to perform many different reactions, including solid-phase peptide synthesis, iterative cross-coupling and accessing reactive, unstable diazirines in a single, unified system with high yields and purity. Developing universal and modular hardware that can be automated using one software system makes a wide variety of batch chemistry accessible. This is shown by our system, which performed around 8,500 operations while reusing only 22 distinct steps in 10 unique modules, with the code able to access 17 different reactions. We also demonstrate a complex convergent robotic synthesis of a peptide reacted with a diazirine—a process requiring 12 synthetic steps.
Automated synthesis technologies are often highly specialized, focusing only on a narrow set of reaction classes. Now, solid-phase peptide synthesis, iterative Suzuki–Miyaura cross-coupling and diazirine chemistry have all been automated using the same universal platform architecture. A convergent 12-step synthesis demonstrates the utility of the reported Chemputer system. |
doi_str_mv | 10.1038/s41557-020-00596-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473405724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473198241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-b080282cc28e33d48846dc2695cccb24ab41d759170047f18d9a6e99ba3733ec3</originalsourceid><addsrcrecordid>eNp9kc1qGzEURkVpqB23L9BFEHTTzTT6HY2WxSRNwNBNuhYazbUtM9I40kzAb1_FdlzIoisJdM6ny_0Q-krJD0p4c5sFlVJVhJGKEKnrSn9Ac6qkrAQX-uPlzskMXee8I6SWnNaf0IxzLrlWdI665RBfIG0gOsDDGoepH_2-B5wPcdzC6B3e22Q7vwkZ-4gtnqIvQrZ9f8D7NGySDcG2xXBbCN7Z_qxmn3GwbusjfEZXa9tn-HI-F-jP_d3T8qFa_f71uPy5qpyQ9Vi1pCGsYc6xBjjvRNOIunOs1tI51zJhW0E7JTVVhAi1pk2nbQ1at5YrzsHxBfp-yi1zPU-QRxN8dtD3NsIwZcOE4oJIxURBv71Dd8OUYpnuSFHdMEELxU6US0POCdZmn3yw6WAoMa8dmFMHpnRgjh0YXaSbc_TUBuguytvSC8BPQC5PcQPp39__if0LrMSSlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473198241</pqid></control><display><type>article</type><title>Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Angelone, Davide ; Hammer, Alexander J. S. ; Rohrbach, Simon ; Krambeck, Stefanie ; Granda, Jarosław M. ; Wolf, Jakob ; Zalesskiy, Sergey ; Chisholm, Greig ; Cronin, Leroy</creator><creatorcontrib>Angelone, Davide ; Hammer, Alexander J. S. ; Rohrbach, Simon ; Krambeck, Stefanie ; Granda, Jarosław M. ; Wolf, Jakob ; Zalesskiy, Sergey ; Chisholm, Greig ; Cronin, Leroy</creatorcontrib><description>Although the automatic synthesis of molecules has been established, each reaction class uses bespoke hardware. This means that the connection of multi-step syntheses in a single machine to run many different protocols and reactions is not possible, as manual intervention is required. Here we show how the Chemputer synthesis robot can be programmed to perform many different reactions, including solid-phase peptide synthesis, iterative cross-coupling and accessing reactive, unstable diazirines in a single, unified system with high yields and purity. Developing universal and modular hardware that can be automated using one software system makes a wide variety of batch chemistry accessible. This is shown by our system, which performed around 8,500 operations while reusing only 22 distinct steps in 10 unique modules, with the code able to access 17 different reactions. We also demonstrate a complex convergent robotic synthesis of a peptide reacted with a diazirine—a process requiring 12 synthetic steps.
Automated synthesis technologies are often highly specialized, focusing only on a narrow set of reaction classes. Now, solid-phase peptide synthesis, iterative Suzuki–Miyaura cross-coupling and diazirine chemistry have all been automated using the same universal platform architecture. A convergent 12-step synthesis demonstrates the utility of the reported Chemputer system.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-020-00596-9</identifier><identifier>PMID: 33353971</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403/933 ; 639/638/549/973 ; 639/638/898 ; 639/638/905 ; Analytical Chemistry ; Automation ; Biochemistry ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Convergence ; Coupling (molecular) ; Cross coupling ; Hardware ; Inorganic Chemistry ; Organic Chemistry ; Peptide synthesis ; Peptides ; Physical Chemistry ; Solid phases</subject><ispartof>Nature chemistry, 2021-01, Vol.13 (1), p.63-69</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-b080282cc28e33d48846dc2695cccb24ab41d759170047f18d9a6e99ba3733ec3</citedby><cites>FETCH-LOGICAL-c456t-b080282cc28e33d48846dc2695cccb24ab41d759170047f18d9a6e99ba3733ec3</cites><orcidid>0000-0002-1007-1553 ; 0000-0002-5058-7669 ; 0000-0003-0201-2745 ; 0000-0002-5212-8239 ; 0000-0002-4003-346X ; 0000-0001-8879-907X ; 0000-0001-8035-5757 ; 0000-0002-7796-2780 ; 0000-0002-0198-6225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-020-00596-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-020-00596-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33353971$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Angelone, Davide</creatorcontrib><creatorcontrib>Hammer, Alexander J. S.</creatorcontrib><creatorcontrib>Rohrbach, Simon</creatorcontrib><creatorcontrib>Krambeck, Stefanie</creatorcontrib><creatorcontrib>Granda, Jarosław M.</creatorcontrib><creatorcontrib>Wolf, Jakob</creatorcontrib><creatorcontrib>Zalesskiy, Sergey</creatorcontrib><creatorcontrib>Chisholm, Greig</creatorcontrib><creatorcontrib>Cronin, Leroy</creatorcontrib><title>Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Although the automatic synthesis of molecules has been established, each reaction class uses bespoke hardware. This means that the connection of multi-step syntheses in a single machine to run many different protocols and reactions is not possible, as manual intervention is required. Here we show how the Chemputer synthesis robot can be programmed to perform many different reactions, including solid-phase peptide synthesis, iterative cross-coupling and accessing reactive, unstable diazirines in a single, unified system with high yields and purity. Developing universal and modular hardware that can be automated using one software system makes a wide variety of batch chemistry accessible. This is shown by our system, which performed around 8,500 operations while reusing only 22 distinct steps in 10 unique modules, with the code able to access 17 different reactions. We also demonstrate a complex convergent robotic synthesis of a peptide reacted with a diazirine—a process requiring 12 synthetic steps.
Automated synthesis technologies are often highly specialized, focusing only on a narrow set of reaction classes. Now, solid-phase peptide synthesis, iterative Suzuki–Miyaura cross-coupling and diazirine chemistry have all been automated using the same universal platform architecture. A convergent 12-step synthesis demonstrates the utility of the reported Chemputer system.</description><subject>639/638/403/933</subject><subject>639/638/549/973</subject><subject>639/638/898</subject><subject>639/638/905</subject><subject>Analytical Chemistry</subject><subject>Automation</subject><subject>Biochemistry</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Convergence</subject><subject>Coupling (molecular)</subject><subject>Cross coupling</subject><subject>Hardware</subject><subject>Inorganic Chemistry</subject><subject>Organic Chemistry</subject><subject>Peptide synthesis</subject><subject>Peptides</subject><subject>Physical Chemistry</subject><subject>Solid phases</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1qGzEURkVpqB23L9BFEHTTzTT6HY2WxSRNwNBNuhYazbUtM9I40kzAb1_FdlzIoisJdM6ny_0Q-krJD0p4c5sFlVJVhJGKEKnrSn9Ac6qkrAQX-uPlzskMXee8I6SWnNaf0IxzLrlWdI665RBfIG0gOsDDGoepH_2-B5wPcdzC6B3e22Q7vwkZ-4gtnqIvQrZ9f8D7NGySDcG2xXBbCN7Z_qxmn3GwbusjfEZXa9tn-HI-F-jP_d3T8qFa_f71uPy5qpyQ9Vi1pCGsYc6xBjjvRNOIunOs1tI51zJhW0E7JTVVhAi1pk2nbQ1at5YrzsHxBfp-yi1zPU-QRxN8dtD3NsIwZcOE4oJIxURBv71Dd8OUYpnuSFHdMEELxU6US0POCdZmn3yw6WAoMa8dmFMHpnRgjh0YXaSbc_TUBuguytvSC8BPQC5PcQPp39__if0LrMSSlg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Angelone, Davide</creator><creator>Hammer, Alexander J. S.</creator><creator>Rohrbach, Simon</creator><creator>Krambeck, Stefanie</creator><creator>Granda, Jarosław M.</creator><creator>Wolf, Jakob</creator><creator>Zalesskiy, Sergey</creator><creator>Chisholm, Greig</creator><creator>Cronin, Leroy</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1007-1553</orcidid><orcidid>https://orcid.org/0000-0002-5058-7669</orcidid><orcidid>https://orcid.org/0000-0003-0201-2745</orcidid><orcidid>https://orcid.org/0000-0002-5212-8239</orcidid><orcidid>https://orcid.org/0000-0002-4003-346X</orcidid><orcidid>https://orcid.org/0000-0001-8879-907X</orcidid><orcidid>https://orcid.org/0000-0001-8035-5757</orcidid><orcidid>https://orcid.org/0000-0002-7796-2780</orcidid><orcidid>https://orcid.org/0000-0002-0198-6225</orcidid></search><sort><creationdate>20210101</creationdate><title>Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine</title><author>Angelone, Davide ; Hammer, Alexander J. S. ; Rohrbach, Simon ; Krambeck, Stefanie ; Granda, Jarosław M. ; Wolf, Jakob ; Zalesskiy, Sergey ; Chisholm, Greig ; Cronin, Leroy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-b080282cc28e33d48846dc2695cccb24ab41d759170047f18d9a6e99ba3733ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/403/933</topic><topic>639/638/549/973</topic><topic>639/638/898</topic><topic>639/638/905</topic><topic>Analytical Chemistry</topic><topic>Automation</topic><topic>Biochemistry</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Convergence</topic><topic>Coupling (molecular)</topic><topic>Cross coupling</topic><topic>Hardware</topic><topic>Inorganic Chemistry</topic><topic>Organic Chemistry</topic><topic>Peptide synthesis</topic><topic>Peptides</topic><topic>Physical Chemistry</topic><topic>Solid phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angelone, Davide</creatorcontrib><creatorcontrib>Hammer, Alexander J. S.</creatorcontrib><creatorcontrib>Rohrbach, Simon</creatorcontrib><creatorcontrib>Krambeck, Stefanie</creatorcontrib><creatorcontrib>Granda, Jarosław M.</creatorcontrib><creatorcontrib>Wolf, Jakob</creatorcontrib><creatorcontrib>Zalesskiy, Sergey</creatorcontrib><creatorcontrib>Chisholm, Greig</creatorcontrib><creatorcontrib>Cronin, Leroy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angelone, Davide</au><au>Hammer, Alexander J. S.</au><au>Rohrbach, Simon</au><au>Krambeck, Stefanie</au><au>Granda, Jarosław M.</au><au>Wolf, Jakob</au><au>Zalesskiy, Sergey</au><au>Chisholm, Greig</au><au>Cronin, Leroy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>63</spage><epage>69</epage><pages>63-69</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Although the automatic synthesis of molecules has been established, each reaction class uses bespoke hardware. This means that the connection of multi-step syntheses in a single machine to run many different protocols and reactions is not possible, as manual intervention is required. Here we show how the Chemputer synthesis robot can be programmed to perform many different reactions, including solid-phase peptide synthesis, iterative cross-coupling and accessing reactive, unstable diazirines in a single, unified system with high yields and purity. Developing universal and modular hardware that can be automated using one software system makes a wide variety of batch chemistry accessible. This is shown by our system, which performed around 8,500 operations while reusing only 22 distinct steps in 10 unique modules, with the code able to access 17 different reactions. We also demonstrate a complex convergent robotic synthesis of a peptide reacted with a diazirine—a process requiring 12 synthetic steps.
Automated synthesis technologies are often highly specialized, focusing only on a narrow set of reaction classes. Now, solid-phase peptide synthesis, iterative Suzuki–Miyaura cross-coupling and diazirine chemistry have all been automated using the same universal platform architecture. A convergent 12-step synthesis demonstrates the utility of the reported Chemputer system.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33353971</pmid><doi>10.1038/s41557-020-00596-9</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1007-1553</orcidid><orcidid>https://orcid.org/0000-0002-5058-7669</orcidid><orcidid>https://orcid.org/0000-0003-0201-2745</orcidid><orcidid>https://orcid.org/0000-0002-5212-8239</orcidid><orcidid>https://orcid.org/0000-0002-4003-346X</orcidid><orcidid>https://orcid.org/0000-0001-8879-907X</orcidid><orcidid>https://orcid.org/0000-0001-8035-5757</orcidid><orcidid>https://orcid.org/0000-0002-7796-2780</orcidid><orcidid>https://orcid.org/0000-0002-0198-6225</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2021-01, Vol.13 (1), p.63-69 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_2473405724 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | 639/638/403/933 639/638/549/973 639/638/898 639/638/905 Analytical Chemistry Automation Biochemistry Chemical synthesis Chemistry Chemistry and Materials Science Chemistry/Food Science Convergence Coupling (molecular) Cross coupling Hardware Inorganic Chemistry Organic Chemistry Peptide synthesis Peptides Physical Chemistry Solid phases |
title | Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A08%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20multiple%20synthetic%20paradigms%20in%20a%20universally%20programmable%20chemical%20synthesis%20machine&rft.jtitle=Nature%20chemistry&rft.au=Angelone,%20Davide&rft.date=2021-01-01&rft.volume=13&rft.issue=1&rft.spage=63&rft.epage=69&rft.pages=63-69&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-020-00596-9&rft_dat=%3Cproquest_cross%3E2473198241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473198241&rft_id=info:pmid/33353971&rfr_iscdi=true |