Machine learning with bond information for local structure optimizations in surface science
Local optimization of adsorption systems inherently involves different scales: within the substrate, within the molecule, and between the molecule and the substrate. In this work, we show how the explicit modeling of different characteristics of the bonds in these systems improves the performance of...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-12, Vol.153 (23), p.234116-234116 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234116 |
---|---|
container_issue | 23 |
container_start_page | 234116 |
container_title | The Journal of chemical physics |
container_volume | 153 |
creator | Garijo del Río, Estefanía Kaappa, Sami Garrido Torres, José A. Bligaard, Thomas Jacobsen, Karsten Wedel |
description | Local optimization of adsorption systems inherently involves different scales: within the substrate, within the molecule, and between the molecule and the substrate. In this work, we show how the explicit modeling of different characteristics of the bonds in these systems improves the performance of machine learning methods for optimization. We introduce an anisotropic kernel in the Gaussian process regression framework that guides the search for the local minimum, and we show its overall good performance across different types of atomic systems. The method shows a speed-up of up to a factor of two compared with the fastest standard optimization methods on adsorption systems. Additionally, we show that a limited memory approach is not only beneficial in terms of overall computational resources but can also result in a further reduction of energy and force calculations. |
doi_str_mv | 10.1063/5.0033778 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473402544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471565236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-ee370fd88ef806e8f1fd662a776b288ae9bdcfcc2e1f2844219021a35c9b63233</originalsourceid><addsrcrecordid>eNp90U2LFDEQBuAgijuOHvwDEvSiQq_56iR9XBa_YMWLnjyEdLriZOlOxiSt6K83szMqCHoIlcPDm1QVQg8pOadE8hf9OSGcK6VvoQ0leuiUHMhttCGE0W6QRJ6he6VcE0KoYuIuOuOc9-2wDfr0zrpdiIBnsDmG-Bl_C3WHxxQnHKJPebE1pIjbDc_J2RmXmldX1ww47WtYwo8bUJrGZc3eOsDFBYgO7qM73s4FHpzqFn189fLD5Zvu6v3rt5cXV50Toq8dAFfET1qD10SC9tRPUjKrlByZ1haGcXLeOQbUMy0Eo0Pry_LeDaPkjPMtenzMTaUG0x6v4HYuxQiuGqqkJm1IW_T0iPY5fVmhVLOE4mCebYS0FsOE4oKwXohGn_xFr9OaY2vhoGgve8YPgc-OyuVUSgZv9jksNn83lJjDWkxvTmtp9tEpcR0XmH7LX3to4PkRHH5_M9D_pv0Tf035DzT7yfOfUuyi-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471565236</pqid></control><display><type>article</type><title>Machine learning with bond information for local structure optimizations in surface science</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Garijo del Río, Estefanía ; Kaappa, Sami ; Garrido Torres, José A. ; Bligaard, Thomas ; Jacobsen, Karsten Wedel</creator><creatorcontrib>Garijo del Río, Estefanía ; Kaappa, Sami ; Garrido Torres, José A. ; Bligaard, Thomas ; Jacobsen, Karsten Wedel ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Local optimization of adsorption systems inherently involves different scales: within the substrate, within the molecule, and between the molecule and the substrate. In this work, we show how the explicit modeling of different characteristics of the bonds in these systems improves the performance of machine learning methods for optimization. We introduce an anisotropic kernel in the Gaussian process regression framework that guides the search for the local minimum, and we show its overall good performance across different types of atomic systems. The method shows a speed-up of up to a factor of two compared with the fastest standard optimization methods on adsorption systems. Additionally, we show that a limited memory approach is not only beneficial in terms of overall computational resources but can also result in a further reduction of energy and force calculations.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0033778</identifier><identifier>PMID: 33353332</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Adsorption ; atomic structure ; density functional theory ; Gaussian process ; Gaussian processes ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Local optimization ; Machine learning ; Optimization ; optimization algorithms ; Performance enhancement ; potential energy surfaces ; Substrates ; surface science</subject><ispartof>The Journal of chemical physics, 2020-12, Vol.153 (23), p.234116-234116</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-ee370fd88ef806e8f1fd662a776b288ae9bdcfcc2e1f2844219021a35c9b63233</citedby><cites>FETCH-LOGICAL-c445t-ee370fd88ef806e8f1fd662a776b288ae9bdcfcc2e1f2844219021a35c9b63233</cites><orcidid>0000-0002-1727-0862 ; 0000-0001-6989-6077 ; 0000-0001-5434-6435 ; 0000-0002-1121-2979 ; 0000-0003-0386-0201 ; 0000000217270862 ; 0000000211212979 ; 0000000169896077 ; 0000000154346435 ; 0000000303860201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0033778$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33353332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1768006$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Garijo del Río, Estefanía</creatorcontrib><creatorcontrib>Kaappa, Sami</creatorcontrib><creatorcontrib>Garrido Torres, José A.</creatorcontrib><creatorcontrib>Bligaard, Thomas</creatorcontrib><creatorcontrib>Jacobsen, Karsten Wedel</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Machine learning with bond information for local structure optimizations in surface science</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Local optimization of adsorption systems inherently involves different scales: within the substrate, within the molecule, and between the molecule and the substrate. In this work, we show how the explicit modeling of different characteristics of the bonds in these systems improves the performance of machine learning methods for optimization. We introduce an anisotropic kernel in the Gaussian process regression framework that guides the search for the local minimum, and we show its overall good performance across different types of atomic systems. The method shows a speed-up of up to a factor of two compared with the fastest standard optimization methods on adsorption systems. Additionally, we show that a limited memory approach is not only beneficial in terms of overall computational resources but can also result in a further reduction of energy and force calculations.</description><subject>Adsorption</subject><subject>atomic structure</subject><subject>density functional theory</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Local optimization</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>optimization algorithms</subject><subject>Performance enhancement</subject><subject>potential energy surfaces</subject><subject>Substrates</subject><subject>surface science</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90U2LFDEQBuAgijuOHvwDEvSiQq_56iR9XBa_YMWLnjyEdLriZOlOxiSt6K83szMqCHoIlcPDm1QVQg8pOadE8hf9OSGcK6VvoQ0leuiUHMhttCGE0W6QRJ6he6VcE0KoYuIuOuOc9-2wDfr0zrpdiIBnsDmG-Bl_C3WHxxQnHKJPebE1pIjbDc_J2RmXmldX1ww47WtYwo8bUJrGZc3eOsDFBYgO7qM73s4FHpzqFn189fLD5Zvu6v3rt5cXV50Toq8dAFfET1qD10SC9tRPUjKrlByZ1haGcXLeOQbUMy0Eo0Pry_LeDaPkjPMtenzMTaUG0x6v4HYuxQiuGqqkJm1IW_T0iPY5fVmhVLOE4mCebYS0FsOE4oKwXohGn_xFr9OaY2vhoGgve8YPgc-OyuVUSgZv9jksNn83lJjDWkxvTmtp9tEpcR0XmH7LX3to4PkRHH5_M9D_pv0Tf035DzT7yfOfUuyi-w</recordid><startdate>20201221</startdate><enddate>20201221</enddate><creator>Garijo del Río, Estefanía</creator><creator>Kaappa, Sami</creator><creator>Garrido Torres, José A.</creator><creator>Bligaard, Thomas</creator><creator>Jacobsen, Karsten Wedel</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1727-0862</orcidid><orcidid>https://orcid.org/0000-0001-6989-6077</orcidid><orcidid>https://orcid.org/0000-0001-5434-6435</orcidid><orcidid>https://orcid.org/0000-0002-1121-2979</orcidid><orcidid>https://orcid.org/0000-0003-0386-0201</orcidid><orcidid>https://orcid.org/0000000217270862</orcidid><orcidid>https://orcid.org/0000000211212979</orcidid><orcidid>https://orcid.org/0000000169896077</orcidid><orcidid>https://orcid.org/0000000154346435</orcidid><orcidid>https://orcid.org/0000000303860201</orcidid></search><sort><creationdate>20201221</creationdate><title>Machine learning with bond information for local structure optimizations in surface science</title><author>Garijo del Río, Estefanía ; Kaappa, Sami ; Garrido Torres, José A. ; Bligaard, Thomas ; Jacobsen, Karsten Wedel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-ee370fd88ef806e8f1fd662a776b288ae9bdcfcc2e1f2844219021a35c9b63233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>atomic structure</topic><topic>density functional theory</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Local optimization</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>optimization algorithms</topic><topic>Performance enhancement</topic><topic>potential energy surfaces</topic><topic>Substrates</topic><topic>surface science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garijo del Río, Estefanía</creatorcontrib><creatorcontrib>Kaappa, Sami</creatorcontrib><creatorcontrib>Garrido Torres, José A.</creatorcontrib><creatorcontrib>Bligaard, Thomas</creatorcontrib><creatorcontrib>Jacobsen, Karsten Wedel</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garijo del Río, Estefanía</au><au>Kaappa, Sami</au><au>Garrido Torres, José A.</au><au>Bligaard, Thomas</au><au>Jacobsen, Karsten Wedel</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning with bond information for local structure optimizations in surface science</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-12-21</date><risdate>2020</risdate><volume>153</volume><issue>23</issue><spage>234116</spage><epage>234116</epage><pages>234116-234116</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Local optimization of adsorption systems inherently involves different scales: within the substrate, within the molecule, and between the molecule and the substrate. In this work, we show how the explicit modeling of different characteristics of the bonds in these systems improves the performance of machine learning methods for optimization. We introduce an anisotropic kernel in the Gaussian process regression framework that guides the search for the local minimum, and we show its overall good performance across different types of atomic systems. The method shows a speed-up of up to a factor of two compared with the fastest standard optimization methods on adsorption systems. Additionally, we show that a limited memory approach is not only beneficial in terms of overall computational resources but can also result in a further reduction of energy and force calculations.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33353332</pmid><doi>10.1063/5.0033778</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1727-0862</orcidid><orcidid>https://orcid.org/0000-0001-6989-6077</orcidid><orcidid>https://orcid.org/0000-0001-5434-6435</orcidid><orcidid>https://orcid.org/0000-0002-1121-2979</orcidid><orcidid>https://orcid.org/0000-0003-0386-0201</orcidid><orcidid>https://orcid.org/0000000217270862</orcidid><orcidid>https://orcid.org/0000000211212979</orcidid><orcidid>https://orcid.org/0000000169896077</orcidid><orcidid>https://orcid.org/0000000154346435</orcidid><orcidid>https://orcid.org/0000000303860201</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-12, Vol.153 (23), p.234116-234116 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2473402544 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Adsorption atomic structure density functional theory Gaussian process Gaussian processes INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Local optimization Machine learning Optimization optimization algorithms Performance enhancement potential energy surfaces Substrates surface science |
title | Machine learning with bond information for local structure optimizations in surface science |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20with%20bond%20information%20for%20local%20structure%20optimizations%20in%20surface%20science&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Garijo%20del%20R%C3%ADo,%20Estefan%C3%ADa&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-12-21&rft.volume=153&rft.issue=23&rft.spage=234116&rft.epage=234116&rft.pages=234116-234116&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0033778&rft_dat=%3Cproquest_cross%3E2471565236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471565236&rft_id=info:pmid/33353332&rfr_iscdi=true |