Machine learning with bond information for local structure optimizations in surface science

Local optimization of adsorption systems inherently involves different scales: within the substrate, within the molecule, and between the molecule and the substrate. In this work, we show how the explicit modeling of different characteristics of the bonds in these systems improves the performance of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-12, Vol.153 (23), p.234116-234116
Hauptverfasser: Garijo del Río, Estefanía, Kaappa, Sami, Garrido Torres, José A., Bligaard, Thomas, Jacobsen, Karsten Wedel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234116
container_issue 23
container_start_page 234116
container_title The Journal of chemical physics
container_volume 153
creator Garijo del Río, Estefanía
Kaappa, Sami
Garrido Torres, José A.
Bligaard, Thomas
Jacobsen, Karsten Wedel
description Local optimization of adsorption systems inherently involves different scales: within the substrate, within the molecule, and between the molecule and the substrate. In this work, we show how the explicit modeling of different characteristics of the bonds in these systems improves the performance of machine learning methods for optimization. We introduce an anisotropic kernel in the Gaussian process regression framework that guides the search for the local minimum, and we show its overall good performance across different types of atomic systems. The method shows a speed-up of up to a factor of two compared with the fastest standard optimization methods on adsorption systems. Additionally, we show that a limited memory approach is not only beneficial in terms of overall computational resources but can also result in a further reduction of energy and force calculations.
doi_str_mv 10.1063/5.0033778
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473402544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471565236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-ee370fd88ef806e8f1fd662a776b288ae9bdcfcc2e1f2844219021a35c9b63233</originalsourceid><addsrcrecordid>eNp90U2LFDEQBuAgijuOHvwDEvSiQq_56iR9XBa_YMWLnjyEdLriZOlOxiSt6K83szMqCHoIlcPDm1QVQg8pOadE8hf9OSGcK6VvoQ0leuiUHMhttCGE0W6QRJ6he6VcE0KoYuIuOuOc9-2wDfr0zrpdiIBnsDmG-Bl_C3WHxxQnHKJPebE1pIjbDc_J2RmXmldX1ww47WtYwo8bUJrGZc3eOsDFBYgO7qM73s4FHpzqFn189fLD5Zvu6v3rt5cXV50Toq8dAFfET1qD10SC9tRPUjKrlByZ1haGcXLeOQbUMy0Eo0Pry_LeDaPkjPMtenzMTaUG0x6v4HYuxQiuGqqkJm1IW_T0iPY5fVmhVLOE4mCebYS0FsOE4oKwXohGn_xFr9OaY2vhoGgve8YPgc-OyuVUSgZv9jksNn83lJjDWkxvTmtp9tEpcR0XmH7LX3to4PkRHH5_M9D_pv0Tf035DzT7yfOfUuyi-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471565236</pqid></control><display><type>article</type><title>Machine learning with bond information for local structure optimizations in surface science</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Garijo del Río, Estefanía ; Kaappa, Sami ; Garrido Torres, José A. ; Bligaard, Thomas ; Jacobsen, Karsten Wedel</creator><creatorcontrib>Garijo del Río, Estefanía ; Kaappa, Sami ; Garrido Torres, José A. ; Bligaard, Thomas ; Jacobsen, Karsten Wedel ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Local optimization of adsorption systems inherently involves different scales: within the substrate, within the molecule, and between the molecule and the substrate. In this work, we show how the explicit modeling of different characteristics of the bonds in these systems improves the performance of machine learning methods for optimization. We introduce an anisotropic kernel in the Gaussian process regression framework that guides the search for the local minimum, and we show its overall good performance across different types of atomic systems. The method shows a speed-up of up to a factor of two compared with the fastest standard optimization methods on adsorption systems. Additionally, we show that a limited memory approach is not only beneficial in terms of overall computational resources but can also result in a further reduction of energy and force calculations.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0033778</identifier><identifier>PMID: 33353332</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Adsorption ; atomic structure ; density functional theory ; Gaussian process ; Gaussian processes ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Local optimization ; Machine learning ; Optimization ; optimization algorithms ; Performance enhancement ; potential energy surfaces ; Substrates ; surface science</subject><ispartof>The Journal of chemical physics, 2020-12, Vol.153 (23), p.234116-234116</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-ee370fd88ef806e8f1fd662a776b288ae9bdcfcc2e1f2844219021a35c9b63233</citedby><cites>FETCH-LOGICAL-c445t-ee370fd88ef806e8f1fd662a776b288ae9bdcfcc2e1f2844219021a35c9b63233</cites><orcidid>0000-0002-1727-0862 ; 0000-0001-6989-6077 ; 0000-0001-5434-6435 ; 0000-0002-1121-2979 ; 0000-0003-0386-0201 ; 0000000217270862 ; 0000000211212979 ; 0000000169896077 ; 0000000154346435 ; 0000000303860201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0033778$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33353332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1768006$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Garijo del Río, Estefanía</creatorcontrib><creatorcontrib>Kaappa, Sami</creatorcontrib><creatorcontrib>Garrido Torres, José A.</creatorcontrib><creatorcontrib>Bligaard, Thomas</creatorcontrib><creatorcontrib>Jacobsen, Karsten Wedel</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Machine learning with bond information for local structure optimizations in surface science</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Local optimization of adsorption systems inherently involves different scales: within the substrate, within the molecule, and between the molecule and the substrate. In this work, we show how the explicit modeling of different characteristics of the bonds in these systems improves the performance of machine learning methods for optimization. We introduce an anisotropic kernel in the Gaussian process regression framework that guides the search for the local minimum, and we show its overall good performance across different types of atomic systems. The method shows a speed-up of up to a factor of two compared with the fastest standard optimization methods on adsorption systems. Additionally, we show that a limited memory approach is not only beneficial in terms of overall computational resources but can also result in a further reduction of energy and force calculations.</description><subject>Adsorption</subject><subject>atomic structure</subject><subject>density functional theory</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Local optimization</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>optimization algorithms</subject><subject>Performance enhancement</subject><subject>potential energy surfaces</subject><subject>Substrates</subject><subject>surface science</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90U2LFDEQBuAgijuOHvwDEvSiQq_56iR9XBa_YMWLnjyEdLriZOlOxiSt6K83szMqCHoIlcPDm1QVQg8pOadE8hf9OSGcK6VvoQ0leuiUHMhttCGE0W6QRJ6he6VcE0KoYuIuOuOc9-2wDfr0zrpdiIBnsDmG-Bl_C3WHxxQnHKJPebE1pIjbDc_J2RmXmldX1ww47WtYwo8bUJrGZc3eOsDFBYgO7qM73s4FHpzqFn189fLD5Zvu6v3rt5cXV50Toq8dAFfET1qD10SC9tRPUjKrlByZ1haGcXLeOQbUMy0Eo0Pry_LeDaPkjPMtenzMTaUG0x6v4HYuxQiuGqqkJm1IW_T0iPY5fVmhVLOE4mCebYS0FsOE4oKwXohGn_xFr9OaY2vhoGgve8YPgc-OyuVUSgZv9jksNn83lJjDWkxvTmtp9tEpcR0XmH7LX3to4PkRHH5_M9D_pv0Tf035DzT7yfOfUuyi-w</recordid><startdate>20201221</startdate><enddate>20201221</enddate><creator>Garijo del Río, Estefanía</creator><creator>Kaappa, Sami</creator><creator>Garrido Torres, José A.</creator><creator>Bligaard, Thomas</creator><creator>Jacobsen, Karsten Wedel</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1727-0862</orcidid><orcidid>https://orcid.org/0000-0001-6989-6077</orcidid><orcidid>https://orcid.org/0000-0001-5434-6435</orcidid><orcidid>https://orcid.org/0000-0002-1121-2979</orcidid><orcidid>https://orcid.org/0000-0003-0386-0201</orcidid><orcidid>https://orcid.org/0000000217270862</orcidid><orcidid>https://orcid.org/0000000211212979</orcidid><orcidid>https://orcid.org/0000000169896077</orcidid><orcidid>https://orcid.org/0000000154346435</orcidid><orcidid>https://orcid.org/0000000303860201</orcidid></search><sort><creationdate>20201221</creationdate><title>Machine learning with bond information for local structure optimizations in surface science</title><author>Garijo del Río, Estefanía ; Kaappa, Sami ; Garrido Torres, José A. ; Bligaard, Thomas ; Jacobsen, Karsten Wedel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-ee370fd88ef806e8f1fd662a776b288ae9bdcfcc2e1f2844219021a35c9b63233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>atomic structure</topic><topic>density functional theory</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Local optimization</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>optimization algorithms</topic><topic>Performance enhancement</topic><topic>potential energy surfaces</topic><topic>Substrates</topic><topic>surface science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garijo del Río, Estefanía</creatorcontrib><creatorcontrib>Kaappa, Sami</creatorcontrib><creatorcontrib>Garrido Torres, José A.</creatorcontrib><creatorcontrib>Bligaard, Thomas</creatorcontrib><creatorcontrib>Jacobsen, Karsten Wedel</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garijo del Río, Estefanía</au><au>Kaappa, Sami</au><au>Garrido Torres, José A.</au><au>Bligaard, Thomas</au><au>Jacobsen, Karsten Wedel</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning with bond information for local structure optimizations in surface science</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-12-21</date><risdate>2020</risdate><volume>153</volume><issue>23</issue><spage>234116</spage><epage>234116</epage><pages>234116-234116</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Local optimization of adsorption systems inherently involves different scales: within the substrate, within the molecule, and between the molecule and the substrate. In this work, we show how the explicit modeling of different characteristics of the bonds in these systems improves the performance of machine learning methods for optimization. We introduce an anisotropic kernel in the Gaussian process regression framework that guides the search for the local minimum, and we show its overall good performance across different types of atomic systems. The method shows a speed-up of up to a factor of two compared with the fastest standard optimization methods on adsorption systems. Additionally, we show that a limited memory approach is not only beneficial in terms of overall computational resources but can also result in a further reduction of energy and force calculations.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33353332</pmid><doi>10.1063/5.0033778</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1727-0862</orcidid><orcidid>https://orcid.org/0000-0001-6989-6077</orcidid><orcidid>https://orcid.org/0000-0001-5434-6435</orcidid><orcidid>https://orcid.org/0000-0002-1121-2979</orcidid><orcidid>https://orcid.org/0000-0003-0386-0201</orcidid><orcidid>https://orcid.org/0000000217270862</orcidid><orcidid>https://orcid.org/0000000211212979</orcidid><orcidid>https://orcid.org/0000000169896077</orcidid><orcidid>https://orcid.org/0000000154346435</orcidid><orcidid>https://orcid.org/0000000303860201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-12, Vol.153 (23), p.234116-234116
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2473402544
source AIP Journals Complete; Alma/SFX Local Collection
subjects Adsorption
atomic structure
density functional theory
Gaussian process
Gaussian processes
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Local optimization
Machine learning
Optimization
optimization algorithms
Performance enhancement
potential energy surfaces
Substrates
surface science
title Machine learning with bond information for local structure optimizations in surface science
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20with%20bond%20information%20for%20local%20structure%20optimizations%20in%20surface%20science&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Garijo%20del%20R%C3%ADo,%20Estefan%C3%ADa&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-12-21&rft.volume=153&rft.issue=23&rft.spage=234116&rft.epage=234116&rft.pages=234116-234116&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0033778&rft_dat=%3Cproquest_cross%3E2471565236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471565236&rft_id=info:pmid/33353332&rfr_iscdi=true