Damage-Free Atomic Layer Etch of WSe2: A Platform for Fabricating Clean Two-Dimensional Devices

The development of a controllable, selective, and repeatable etch process is crucial for controlling the layer thickness and patterning of two-dimensional (2D) materials. However, the atomically thin dimensions and high structural similarity of different 2D materials make it difficult to adapt conve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-01, Vol.13 (1), p.1930-1942
Hauptverfasser: Nipane, Ankur, Choi, Min Sup, Sebastian, Punnu Jose, Yao, Kaiyuan, Borah, Abhinandan, Deshmukh, Prathmesh, Jung, Younghun, Kim, Bumho, Rajendran, Anjaly, Kwock, Kevin W. C., Zangiabadi, Amirali, Menon, Vinod M., Schuck, P. James, Yoo, Won Jong, Hone, James, Teherani, James T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1942
container_issue 1
container_start_page 1930
container_title ACS applied materials & interfaces
container_volume 13
creator Nipane, Ankur
Choi, Min Sup
Sebastian, Punnu Jose
Yao, Kaiyuan
Borah, Abhinandan
Deshmukh, Prathmesh
Jung, Younghun
Kim, Bumho
Rajendran, Anjaly
Kwock, Kevin W. C.
Zangiabadi, Amirali
Menon, Vinod M.
Schuck, P. James
Yoo, Won Jong
Hone, James
Teherani, James T.
description The development of a controllable, selective, and repeatable etch process is crucial for controlling the layer thickness and patterning of two-dimensional (2D) materials. However, the atomically thin dimensions and high structural similarity of different 2D materials make it difficult to adapt conventional thin-film etch processes. In this work, we propose a selective, damage-free atomic layer etch (ALE) that enables layer-by-layer removal of monolayer WSe2 without altering the physical, optical, and electronic properties of the underlying layers. The etch uses a top-down approach where the topmost layer is oxidized in a self-limited manner and then removed using a selective etch. Using a comprehensive set of material, optical, and electrical characterization, we show that the quality of our ALE processed layers is comparable to that of pristine layers of similar thickness. The ALE processed WSe2 layers preserve their bright photoluminescence characteristics and possess high room-temperature hole mobilities of 515 cm(2)/V.s, essential for fabricating high-performance 2D devices. Further, using graphene as a testbed, we demonstrate the fabrication of ultra-clean 2D devices using a sacrificial monolayer WSe2 layer to protect the channel during processing, which is etched in the final process step in a technique we call sacrificial WSe2 with ALE processing (SWAP). The graphene transistors made using the SWAP technique demonstrate high room-temperature field-effect mobilities, up to 200,000 cm(2)/V.s, better than previously reported unencapsulated graphene devices.
doi_str_mv 10.1021/acsami.0c18390
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2473401817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2473401817</sourcerecordid><originalsourceid>FETCH-LOGICAL-p188t-e8fed05460d1defb0e0ed417320e59c8e6f2962b45444a9a95b9171a6b69a06b3</originalsourceid><addsrcrecordid>eNqNkMFLwzAYxYMobk6vnnMUpDNp0zT1NrpNhYGCE4_la_p1RtpkNplj_72FiWcv773Dj8fjEXLN2ZSzmN-B9tCZKdNcJTk7IWOeCxGpOI1P_7IQI3Lh_SdjMolZek5GSZKkPM2yMSnn0MEGo2WPSGfBdUbTFRywp4ugP6hr6Psrxvd0Rl9aCI3rOzoIXULVGw3B2A0tWgRL13sXzU2H1htnoaVz_DYa_SU5a6D1ePXrE_K2XKyLx2j1_PBUzFbRlisVIlQN1iwVktW8xqZiyLAWPBv2YpprhbKJcxlXIhVCQA55WuU84yArmQOTVTIhN8febe--duhD2RmvsW3Botv5MhZZIhhXQ-WE3B7RPVau8dqg1Vhue9NBfyjZ8BLnTMohDNMGWv2fLkwYPnG2cDsbkh-6fHm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473401817</pqid></control><display><type>article</type><title>Damage-Free Atomic Layer Etch of WSe2: A Platform for Fabricating Clean Two-Dimensional Devices</title><source>American Chemical Society Journals</source><creator>Nipane, Ankur ; Choi, Min Sup ; Sebastian, Punnu Jose ; Yao, Kaiyuan ; Borah, Abhinandan ; Deshmukh, Prathmesh ; Jung, Younghun ; Kim, Bumho ; Rajendran, Anjaly ; Kwock, Kevin W. C. ; Zangiabadi, Amirali ; Menon, Vinod M. ; Schuck, P. James ; Yoo, Won Jong ; Hone, James ; Teherani, James T.</creator><creatorcontrib>Nipane, Ankur ; Choi, Min Sup ; Sebastian, Punnu Jose ; Yao, Kaiyuan ; Borah, Abhinandan ; Deshmukh, Prathmesh ; Jung, Younghun ; Kim, Bumho ; Rajendran, Anjaly ; Kwock, Kevin W. C. ; Zangiabadi, Amirali ; Menon, Vinod M. ; Schuck, P. James ; Yoo, Won Jong ; Hone, James ; Teherani, James T.</creatorcontrib><description>The development of a controllable, selective, and repeatable etch process is crucial for controlling the layer thickness and patterning of two-dimensional (2D) materials. However, the atomically thin dimensions and high structural similarity of different 2D materials make it difficult to adapt conventional thin-film etch processes. In this work, we propose a selective, damage-free atomic layer etch (ALE) that enables layer-by-layer removal of monolayer WSe2 without altering the physical, optical, and electronic properties of the underlying layers. The etch uses a top-down approach where the topmost layer is oxidized in a self-limited manner and then removed using a selective etch. Using a comprehensive set of material, optical, and electrical characterization, we show that the quality of our ALE processed layers is comparable to that of pristine layers of similar thickness. The ALE processed WSe2 layers preserve their bright photoluminescence characteristics and possess high room-temperature hole mobilities of 515 cm(2)/V.s, essential for fabricating high-performance 2D devices. Further, using graphene as a testbed, we demonstrate the fabrication of ultra-clean 2D devices using a sacrificial monolayer WSe2 layer to protect the channel during processing, which is etched in the final process step in a technique we call sacrificial WSe2 with ALE processing (SWAP). The graphene transistors made using the SWAP technique demonstrate high room-temperature field-effect mobilities, up to 200,000 cm(2)/V.s, better than previously reported unencapsulated graphene devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c18390</identifier><identifier>PMID: 33351577</identifier><language>eng</language><publisher>WASHINGTON: Amer Chemical Soc</publisher><subject>Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>ACS applied materials &amp; interfaces, 2021-01, Vol.13 (1), p.1930-1942</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000611066000188</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-p188t-e8fed05460d1defb0e0ed417320e59c8e6f2962b45444a9a95b9171a6b69a06b3</cites><orcidid>0000-0002-3767-7969 ; 0000-0001-9244-2671 ; 0000-0002-8448-4043 ; 0000-0003-2226-267X ; 0000-0002-8084-3301 ; 0000-0002-9725-6445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Nipane, Ankur</creatorcontrib><creatorcontrib>Choi, Min Sup</creatorcontrib><creatorcontrib>Sebastian, Punnu Jose</creatorcontrib><creatorcontrib>Yao, Kaiyuan</creatorcontrib><creatorcontrib>Borah, Abhinandan</creatorcontrib><creatorcontrib>Deshmukh, Prathmesh</creatorcontrib><creatorcontrib>Jung, Younghun</creatorcontrib><creatorcontrib>Kim, Bumho</creatorcontrib><creatorcontrib>Rajendran, Anjaly</creatorcontrib><creatorcontrib>Kwock, Kevin W. C.</creatorcontrib><creatorcontrib>Zangiabadi, Amirali</creatorcontrib><creatorcontrib>Menon, Vinod M.</creatorcontrib><creatorcontrib>Schuck, P. James</creatorcontrib><creatorcontrib>Yoo, Won Jong</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Teherani, James T.</creatorcontrib><title>Damage-Free Atomic Layer Etch of WSe2: A Platform for Fabricating Clean Two-Dimensional Devices</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS APPL MATER INTER</addtitle><description>The development of a controllable, selective, and repeatable etch process is crucial for controlling the layer thickness and patterning of two-dimensional (2D) materials. However, the atomically thin dimensions and high structural similarity of different 2D materials make it difficult to adapt conventional thin-film etch processes. In this work, we propose a selective, damage-free atomic layer etch (ALE) that enables layer-by-layer removal of monolayer WSe2 without altering the physical, optical, and electronic properties of the underlying layers. The etch uses a top-down approach where the topmost layer is oxidized in a self-limited manner and then removed using a selective etch. Using a comprehensive set of material, optical, and electrical characterization, we show that the quality of our ALE processed layers is comparable to that of pristine layers of similar thickness. The ALE processed WSe2 layers preserve their bright photoluminescence characteristics and possess high room-temperature hole mobilities of 515 cm(2)/V.s, essential for fabricating high-performance 2D devices. Further, using graphene as a testbed, we demonstrate the fabrication of ultra-clean 2D devices using a sacrificial monolayer WSe2 layer to protect the channel during processing, which is etched in the final process step in a technique we call sacrificial WSe2 with ALE processing (SWAP). The graphene transistors made using the SWAP technique demonstrate high room-temperature field-effect mobilities, up to 200,000 cm(2)/V.s, better than previously reported unencapsulated graphene devices.</description><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMFLwzAYxYMobk6vnnMUpDNp0zT1NrpNhYGCE4_la_p1RtpkNplj_72FiWcv773Dj8fjEXLN2ZSzmN-B9tCZKdNcJTk7IWOeCxGpOI1P_7IQI3Lh_SdjMolZek5GSZKkPM2yMSnn0MEGo2WPSGfBdUbTFRywp4ugP6hr6Psrxvd0Rl9aCI3rOzoIXULVGw3B2A0tWgRL13sXzU2H1htnoaVz_DYa_SU5a6D1ePXrE_K2XKyLx2j1_PBUzFbRlisVIlQN1iwVktW8xqZiyLAWPBv2YpprhbKJcxlXIhVCQA55WuU84yArmQOTVTIhN8febe--duhD2RmvsW3Botv5MhZZIhhXQ-WE3B7RPVau8dqg1Vhue9NBfyjZ8BLnTMohDNMGWv2fLkwYPnG2cDsbkh-6fHm4</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Nipane, Ankur</creator><creator>Choi, Min Sup</creator><creator>Sebastian, Punnu Jose</creator><creator>Yao, Kaiyuan</creator><creator>Borah, Abhinandan</creator><creator>Deshmukh, Prathmesh</creator><creator>Jung, Younghun</creator><creator>Kim, Bumho</creator><creator>Rajendran, Anjaly</creator><creator>Kwock, Kevin W. C.</creator><creator>Zangiabadi, Amirali</creator><creator>Menon, Vinod M.</creator><creator>Schuck, P. James</creator><creator>Yoo, Won Jong</creator><creator>Hone, James</creator><creator>Teherani, James T.</creator><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3767-7969</orcidid><orcidid>https://orcid.org/0000-0001-9244-2671</orcidid><orcidid>https://orcid.org/0000-0002-8448-4043</orcidid><orcidid>https://orcid.org/0000-0003-2226-267X</orcidid><orcidid>https://orcid.org/0000-0002-8084-3301</orcidid><orcidid>https://orcid.org/0000-0002-9725-6445</orcidid></search><sort><creationdate>20210113</creationdate><title>Damage-Free Atomic Layer Etch of WSe2: A Platform for Fabricating Clean Two-Dimensional Devices</title><author>Nipane, Ankur ; Choi, Min Sup ; Sebastian, Punnu Jose ; Yao, Kaiyuan ; Borah, Abhinandan ; Deshmukh, Prathmesh ; Jung, Younghun ; Kim, Bumho ; Rajendran, Anjaly ; Kwock, Kevin W. C. ; Zangiabadi, Amirali ; Menon, Vinod M. ; Schuck, P. James ; Yoo, Won Jong ; Hone, James ; Teherani, James T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p188t-e8fed05460d1defb0e0ed417320e59c8e6f2962b45444a9a95b9171a6b69a06b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nipane, Ankur</creatorcontrib><creatorcontrib>Choi, Min Sup</creatorcontrib><creatorcontrib>Sebastian, Punnu Jose</creatorcontrib><creatorcontrib>Yao, Kaiyuan</creatorcontrib><creatorcontrib>Borah, Abhinandan</creatorcontrib><creatorcontrib>Deshmukh, Prathmesh</creatorcontrib><creatorcontrib>Jung, Younghun</creatorcontrib><creatorcontrib>Kim, Bumho</creatorcontrib><creatorcontrib>Rajendran, Anjaly</creatorcontrib><creatorcontrib>Kwock, Kevin W. C.</creatorcontrib><creatorcontrib>Zangiabadi, Amirali</creatorcontrib><creatorcontrib>Menon, Vinod M.</creatorcontrib><creatorcontrib>Schuck, P. James</creatorcontrib><creatorcontrib>Yoo, Won Jong</creatorcontrib><creatorcontrib>Hone, James</creatorcontrib><creatorcontrib>Teherani, James T.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nipane, Ankur</au><au>Choi, Min Sup</au><au>Sebastian, Punnu Jose</au><au>Yao, Kaiyuan</au><au>Borah, Abhinandan</au><au>Deshmukh, Prathmesh</au><au>Jung, Younghun</au><au>Kim, Bumho</au><au>Rajendran, Anjaly</au><au>Kwock, Kevin W. C.</au><au>Zangiabadi, Amirali</au><au>Menon, Vinod M.</au><au>Schuck, P. James</au><au>Yoo, Won Jong</au><au>Hone, James</au><au>Teherani, James T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Damage-Free Atomic Layer Etch of WSe2: A Platform for Fabricating Clean Two-Dimensional Devices</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><stitle>ACS APPL MATER INTER</stitle><date>2021-01-13</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>1930</spage><epage>1942</epage><pages>1930-1942</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The development of a controllable, selective, and repeatable etch process is crucial for controlling the layer thickness and patterning of two-dimensional (2D) materials. However, the atomically thin dimensions and high structural similarity of different 2D materials make it difficult to adapt conventional thin-film etch processes. In this work, we propose a selective, damage-free atomic layer etch (ALE) that enables layer-by-layer removal of monolayer WSe2 without altering the physical, optical, and electronic properties of the underlying layers. The etch uses a top-down approach where the topmost layer is oxidized in a self-limited manner and then removed using a selective etch. Using a comprehensive set of material, optical, and electrical characterization, we show that the quality of our ALE processed layers is comparable to that of pristine layers of similar thickness. The ALE processed WSe2 layers preserve their bright photoluminescence characteristics and possess high room-temperature hole mobilities of 515 cm(2)/V.s, essential for fabricating high-performance 2D devices. Further, using graphene as a testbed, we demonstrate the fabrication of ultra-clean 2D devices using a sacrificial monolayer WSe2 layer to protect the channel during processing, which is etched in the final process step in a technique we call sacrificial WSe2 with ALE processing (SWAP). The graphene transistors made using the SWAP technique demonstrate high room-temperature field-effect mobilities, up to 200,000 cm(2)/V.s, better than previously reported unencapsulated graphene devices.</abstract><cop>WASHINGTON</cop><pub>Amer Chemical Soc</pub><pmid>33351577</pmid><doi>10.1021/acsami.0c18390</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3767-7969</orcidid><orcidid>https://orcid.org/0000-0001-9244-2671</orcidid><orcidid>https://orcid.org/0000-0002-8448-4043</orcidid><orcidid>https://orcid.org/0000-0003-2226-267X</orcidid><orcidid>https://orcid.org/0000-0002-8084-3301</orcidid><orcidid>https://orcid.org/0000-0002-9725-6445</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-01, Vol.13 (1), p.1930-1942
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2473401817
source American Chemical Society Journals
subjects Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Science & Technology
Science & Technology - Other Topics
Technology
title Damage-Free Atomic Layer Etch of WSe2: A Platform for Fabricating Clean Two-Dimensional Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Damage-Free%20Atomic%20Layer%20Etch%20of%20WSe2:%20A%20Platform%20for%20Fabricating%20Clean%20Two-Dimensional%20Devices&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Nipane,%20Ankur&rft.date=2021-01-13&rft.volume=13&rft.issue=1&rft.spage=1930&rft.epage=1942&rft.pages=1930-1942&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c18390&rft_dat=%3Cproquest_webof%3E2473401817%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473401817&rft_id=info:pmid/33351577&rfr_iscdi=true