Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity

Mechanophores can be used to produce strain-dependent covalent chemical responses in polymeric materials, including stress strengthening, stress sensing and network remodelling. In general, it is desirable for mechanophores to be inert in the absence of force but highly reactive under applied tensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2021-01, Vol.13 (1), p.56-62
Hauptverfasser: Zhang, Yudi, Wang, Zi, Kouznetsova, Tatiana B., Sha, Ye, Xu, Enhua, Shannahan, Logan, Fermen-Coker, Muge, Lin, Yangju, Tang, Chuanbing, Craig, Stephen L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 1
container_start_page 56
container_title Nature chemistry
container_volume 13
creator Zhang, Yudi
Wang, Zi
Kouznetsova, Tatiana B.
Sha, Ye
Xu, Enhua
Shannahan, Logan
Fermen-Coker, Muge
Lin, Yangju
Tang, Chuanbing
Craig, Stephen L.
description Mechanophores can be used to produce strain-dependent covalent chemical responses in polymeric materials, including stress strengthening, stress sensing and network remodelling. In general, it is desirable for mechanophores to be inert in the absence of force but highly reactive under applied tension. Metallocenes possess potentially useful combinations of force-free stability and force-coupled reactivity, but the mechanistic basis of this reactivity remains largely unexplored. Here, we have used single-molecule force spectroscopy to show that the mechanical reactivities of a series of ferrocenophanes are not correlated with ring strain in the reactants, but with the extent of rotational alignment of their two cyclopentadienyl ligands. Distal attachments can be used to restrict the mechanism of ferrocene dissociation to proceed through ligand ‘peeling’, as opposed to the more conventional ’shearing’ mechanism of the parent ferrocene, leading the dissociation rate constant to increase by several orders of magnitude at forces of ~1 nN. It also leads to improved macroscopic, multi-responsive behaviour, including mechanochromism and force-induced cross-linking in ferrocenophane-containing polymers. Metallocenes are attractive mechanophores because they are stable in the absence of force, yet reactive under tension. Now, covalently bridging the two cyclopentadienyl (Cp) ligands of ferrocenes embedded in a polymer has been shown to alter their mechanochemical reactivity, leading to a faster dissociation of the Fe–Cp bond, which occurs through a peeling mechanism rather than a shearing one.
doi_str_mv 10.1038/s41557-020-00600-2
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2472106834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2472106834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-903706be3ad907bf0682eda22045ad8d8f9d203db79dc9da2967126dfdef7f043</originalsourceid><addsrcrecordid>eNqNkU-P1CAYhxujcdfVL-DBkHgxMdUXaEs5mvFvsokXPRMKLzusLYzQOplvLzPdHRMPxhOQ93l-AX5V9ZzCGwq8f5sb2raiBgY1QAdQswfVJRVtWze8kQ_Pew4X1ZOcbwvUcto9ri44L0An28tq_97nWY_ExOBimvTsYyjHMZofmcRAHKYUDQYkE5qtDnG3jQkzuVm8RZJQm6NBdnre7vUhkxJCfDBlkNHeO2aLkzclduV_-fnwtHrk9Jjx2d16VX3_-OHb5nN9_fXTl82769o0op9rCVxANyDXVoIYHHQ9Q6sZg6bVtre9k5YBt4OQ1sgykJ2grLPOohMOGn5VvVpzdyn-XDDPavLZ4DjqgHHJijWC0ZLKj-jLv9DbuKTyGyeKU0m7XhSKrZRJMeeETu2Sn3Q6KArqWItaa1GlFnWqRbEivbiLXoYJ7Vm576EAr1dgj0N02XgMBs8YnHJ6KnnZAS90___0xs-nVjdxCXNR-armgocbTH8e-Y_7_waHCLtF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473191687</pqid></control><display><type>article</type><title>Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Zhang, Yudi ; Wang, Zi ; Kouznetsova, Tatiana B. ; Sha, Ye ; Xu, Enhua ; Shannahan, Logan ; Fermen-Coker, Muge ; Lin, Yangju ; Tang, Chuanbing ; Craig, Stephen L.</creator><creatorcontrib>Zhang, Yudi ; Wang, Zi ; Kouznetsova, Tatiana B. ; Sha, Ye ; Xu, Enhua ; Shannahan, Logan ; Fermen-Coker, Muge ; Lin, Yangju ; Tang, Chuanbing ; Craig, Stephen L.</creatorcontrib><description>Mechanophores can be used to produce strain-dependent covalent chemical responses in polymeric materials, including stress strengthening, stress sensing and network remodelling. In general, it is desirable for mechanophores to be inert in the absence of force but highly reactive under applied tension. Metallocenes possess potentially useful combinations of force-free stability and force-coupled reactivity, but the mechanistic basis of this reactivity remains largely unexplored. Here, we have used single-molecule force spectroscopy to show that the mechanical reactivities of a series of ferrocenophanes are not correlated with ring strain in the reactants, but with the extent of rotational alignment of their two cyclopentadienyl ligands. Distal attachments can be used to restrict the mechanism of ferrocene dissociation to proceed through ligand ‘peeling’, as opposed to the more conventional ’shearing’ mechanism of the parent ferrocene, leading the dissociation rate constant to increase by several orders of magnitude at forces of ~1 nN. It also leads to improved macroscopic, multi-responsive behaviour, including mechanochromism and force-induced cross-linking in ferrocenophane-containing polymers. Metallocenes are attractive mechanophores because they are stable in the absence of force, yet reactive under tension. Now, covalently bridging the two cyclopentadienyl (Cp) ligands of ferrocenes embedded in a polymer has been shown to alter their mechanochemical reactivity, leading to a faster dissociation of the Fe–Cp bond, which occurs through a peeling mechanism rather than a shearing one.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-020-00600-2</identifier><identifier>PMID: 33349695</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403/934 ; 639/638/440/950 ; 639/638/455/941 ; 639/638/911/406/910 ; Analytical Chemistry ; Biochemistry ; Chemistry ; Chemistry and Materials Science ; Chemistry, Multidisciplinary ; Chemistry/Food Science ; Crosslinking ; Ferrocenes ; Ferrocenophanes ; Inorganic Chemistry ; Ligands ; Metallocenes ; Organic Chemistry ; Peeling ; Physical Chemistry ; Physical Sciences ; Polymers ; Reactivity ; Science &amp; Technology ; Shearing ; Spectroscopy ; Strain</subject><ispartof>Nature chemistry, 2021-01, Vol.13 (1), p.56-62</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>67</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000600819300003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-903706be3ad907bf0682eda22045ad8d8f9d203db79dc9da2967126dfdef7f043</citedby><cites>FETCH-LOGICAL-c478t-903706be3ad907bf0682eda22045ad8d8f9d203db79dc9da2967126dfdef7f043</cites><orcidid>0000-0001-6378-7179 ; 0000-0003-2544-3572 ; 0000-0002-0242-8241 ; 0000-0003-3338-1228 ; 0000-0002-0738-0574 ; 0000-0003-0115-9008 ; 0000-0002-8810-0369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930,39263</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33349695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yudi</creatorcontrib><creatorcontrib>Wang, Zi</creatorcontrib><creatorcontrib>Kouznetsova, Tatiana B.</creatorcontrib><creatorcontrib>Sha, Ye</creatorcontrib><creatorcontrib>Xu, Enhua</creatorcontrib><creatorcontrib>Shannahan, Logan</creatorcontrib><creatorcontrib>Fermen-Coker, Muge</creatorcontrib><creatorcontrib>Lin, Yangju</creatorcontrib><creatorcontrib>Tang, Chuanbing</creatorcontrib><creatorcontrib>Craig, Stephen L.</creatorcontrib><title>Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>NAT CHEM</addtitle><addtitle>Nat Chem</addtitle><description>Mechanophores can be used to produce strain-dependent covalent chemical responses in polymeric materials, including stress strengthening, stress sensing and network remodelling. In general, it is desirable for mechanophores to be inert in the absence of force but highly reactive under applied tension. Metallocenes possess potentially useful combinations of force-free stability and force-coupled reactivity, but the mechanistic basis of this reactivity remains largely unexplored. Here, we have used single-molecule force spectroscopy to show that the mechanical reactivities of a series of ferrocenophanes are not correlated with ring strain in the reactants, but with the extent of rotational alignment of their two cyclopentadienyl ligands. Distal attachments can be used to restrict the mechanism of ferrocene dissociation to proceed through ligand ‘peeling’, as opposed to the more conventional ’shearing’ mechanism of the parent ferrocene, leading the dissociation rate constant to increase by several orders of magnitude at forces of ~1 nN. It also leads to improved macroscopic, multi-responsive behaviour, including mechanochromism and force-induced cross-linking in ferrocenophane-containing polymers. Metallocenes are attractive mechanophores because they are stable in the absence of force, yet reactive under tension. Now, covalently bridging the two cyclopentadienyl (Cp) ligands of ferrocenes embedded in a polymer has been shown to alter their mechanochemical reactivity, leading to a faster dissociation of the Fe–Cp bond, which occurs through a peeling mechanism rather than a shearing one.</description><subject>639/638/403/934</subject><subject>639/638/440/950</subject><subject>639/638/455/941</subject><subject>639/638/911/406/910</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry/Food Science</subject><subject>Crosslinking</subject><subject>Ferrocenes</subject><subject>Ferrocenophanes</subject><subject>Inorganic Chemistry</subject><subject>Ligands</subject><subject>Metallocenes</subject><subject>Organic Chemistry</subject><subject>Peeling</subject><subject>Physical Chemistry</subject><subject>Physical Sciences</subject><subject>Polymers</subject><subject>Reactivity</subject><subject>Science &amp; Technology</subject><subject>Shearing</subject><subject>Spectroscopy</subject><subject>Strain</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU-P1CAYhxujcdfVL-DBkHgxMdUXaEs5mvFvsokXPRMKLzusLYzQOplvLzPdHRMPxhOQ93l-AX5V9ZzCGwq8f5sb2raiBgY1QAdQswfVJRVtWze8kQ_Pew4X1ZOcbwvUcto9ri44L0An28tq_97nWY_ExOBimvTsYyjHMZofmcRAHKYUDQYkE5qtDnG3jQkzuVm8RZJQm6NBdnre7vUhkxJCfDBlkNHeO2aLkzclduV_-fnwtHrk9Jjx2d16VX3_-OHb5nN9_fXTl82769o0op9rCVxANyDXVoIYHHQ9Q6sZg6bVtre9k5YBt4OQ1sgykJ2grLPOohMOGn5VvVpzdyn-XDDPavLZ4DjqgHHJijWC0ZLKj-jLv9DbuKTyGyeKU0m7XhSKrZRJMeeETu2Sn3Q6KArqWItaa1GlFnWqRbEivbiLXoYJ7Vm576EAr1dgj0N02XgMBs8YnHJ6KnnZAS90___0xs-nVjdxCXNR-armgocbTH8e-Y_7_waHCLtF</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Zhang, Yudi</creator><creator>Wang, Zi</creator><creator>Kouznetsova, Tatiana B.</creator><creator>Sha, Ye</creator><creator>Xu, Enhua</creator><creator>Shannahan, Logan</creator><creator>Fermen-Coker, Muge</creator><creator>Lin, Yangju</creator><creator>Tang, Chuanbing</creator><creator>Craig, Stephen L.</creator><general>Nature Publishing Group UK</general><general>Springer Nature</general><general>Nature Publishing Group</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6378-7179</orcidid><orcidid>https://orcid.org/0000-0003-2544-3572</orcidid><orcidid>https://orcid.org/0000-0002-0242-8241</orcidid><orcidid>https://orcid.org/0000-0003-3338-1228</orcidid><orcidid>https://orcid.org/0000-0002-0738-0574</orcidid><orcidid>https://orcid.org/0000-0003-0115-9008</orcidid><orcidid>https://orcid.org/0000-0002-8810-0369</orcidid></search><sort><creationdate>20210101</creationdate><title>Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity</title><author>Zhang, Yudi ; Wang, Zi ; Kouznetsova, Tatiana B. ; Sha, Ye ; Xu, Enhua ; Shannahan, Logan ; Fermen-Coker, Muge ; Lin, Yangju ; Tang, Chuanbing ; Craig, Stephen L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-903706be3ad907bf0682eda22045ad8d8f9d203db79dc9da2967126dfdef7f043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/403/934</topic><topic>639/638/440/950</topic><topic>639/638/455/941</topic><topic>639/638/911/406/910</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry/Food Science</topic><topic>Crosslinking</topic><topic>Ferrocenes</topic><topic>Ferrocenophanes</topic><topic>Inorganic Chemistry</topic><topic>Ligands</topic><topic>Metallocenes</topic><topic>Organic Chemistry</topic><topic>Peeling</topic><topic>Physical Chemistry</topic><topic>Physical Sciences</topic><topic>Polymers</topic><topic>Reactivity</topic><topic>Science &amp; Technology</topic><topic>Shearing</topic><topic>Spectroscopy</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yudi</creatorcontrib><creatorcontrib>Wang, Zi</creatorcontrib><creatorcontrib>Kouznetsova, Tatiana B.</creatorcontrib><creatorcontrib>Sha, Ye</creatorcontrib><creatorcontrib>Xu, Enhua</creatorcontrib><creatorcontrib>Shannahan, Logan</creatorcontrib><creatorcontrib>Fermen-Coker, Muge</creatorcontrib><creatorcontrib>Lin, Yangju</creatorcontrib><creatorcontrib>Tang, Chuanbing</creatorcontrib><creatorcontrib>Craig, Stephen L.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yudi</au><au>Wang, Zi</au><au>Kouznetsova, Tatiana B.</au><au>Sha, Ye</au><au>Xu, Enhua</au><au>Shannahan, Logan</au><au>Fermen-Coker, Muge</au><au>Lin, Yangju</au><au>Tang, Chuanbing</au><au>Craig, Stephen L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><stitle>NAT CHEM</stitle><addtitle>Nat Chem</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>56</spage><epage>62</epage><pages>56-62</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Mechanophores can be used to produce strain-dependent covalent chemical responses in polymeric materials, including stress strengthening, stress sensing and network remodelling. In general, it is desirable for mechanophores to be inert in the absence of force but highly reactive under applied tension. Metallocenes possess potentially useful combinations of force-free stability and force-coupled reactivity, but the mechanistic basis of this reactivity remains largely unexplored. Here, we have used single-molecule force spectroscopy to show that the mechanical reactivities of a series of ferrocenophanes are not correlated with ring strain in the reactants, but with the extent of rotational alignment of their two cyclopentadienyl ligands. Distal attachments can be used to restrict the mechanism of ferrocene dissociation to proceed through ligand ‘peeling’, as opposed to the more conventional ’shearing’ mechanism of the parent ferrocene, leading the dissociation rate constant to increase by several orders of magnitude at forces of ~1 nN. It also leads to improved macroscopic, multi-responsive behaviour, including mechanochromism and force-induced cross-linking in ferrocenophane-containing polymers. Metallocenes are attractive mechanophores because they are stable in the absence of force, yet reactive under tension. Now, covalently bridging the two cyclopentadienyl (Cp) ligands of ferrocenes embedded in a polymer has been shown to alter their mechanochemical reactivity, leading to a faster dissociation of the Fe–Cp bond, which occurs through a peeling mechanism rather than a shearing one.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33349695</pmid><doi>10.1038/s41557-020-00600-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6378-7179</orcidid><orcidid>https://orcid.org/0000-0003-2544-3572</orcidid><orcidid>https://orcid.org/0000-0002-0242-8241</orcidid><orcidid>https://orcid.org/0000-0003-3338-1228</orcidid><orcidid>https://orcid.org/0000-0002-0738-0574</orcidid><orcidid>https://orcid.org/0000-0003-0115-9008</orcidid><orcidid>https://orcid.org/0000-0002-8810-0369</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2021-01, Vol.13 (1), p.56-62
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_2472106834
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Nature Journals Online; Alma/SFX Local Collection
subjects 639/638/403/934
639/638/440/950
639/638/455/941
639/638/911/406/910
Analytical Chemistry
Biochemistry
Chemistry
Chemistry and Materials Science
Chemistry, Multidisciplinary
Chemistry/Food Science
Crosslinking
Ferrocenes
Ferrocenophanes
Inorganic Chemistry
Ligands
Metallocenes
Organic Chemistry
Peeling
Physical Chemistry
Physical Sciences
Polymers
Reactivity
Science & Technology
Shearing
Spectroscopy
Strain
title Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distal%20conformational%20locks%20on%20ferrocene%20mechanophores%20guide%20reaction%20pathways%20for%20increased%20mechanochemical%20reactivity&rft.jtitle=Nature%20chemistry&rft.au=Zhang,%20Yudi&rft.date=2021-01-01&rft.volume=13&rft.issue=1&rft.spage=56&rft.epage=62&rft.pages=56-62&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-020-00600-2&rft_dat=%3Cproquest_webof%3E2472106834%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473191687&rft_id=info:pmid/33349695&rfr_iscdi=true