Plastic deformation in linear polyethylene

A detailed study has been made of drawn linear polyethylene using vibrational spectroscopy. The proportion of a monoclinic crystal modification and its dependence on draw ratio is determined by draw temperature, rate and medium (air or water). This is explained by the role of mechanical energy incre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 1985-01, Vol.26 (10), p.1501-1506
Hauptverfasser: Hendra, P.J., Taylor, M.A., Willis, H.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1506
container_issue 10
container_start_page 1501
container_title Polymer (Guilford)
container_volume 26
creator Hendra, P.J.
Taylor, M.A.
Willis, H.A.
description A detailed study has been made of drawn linear polyethylene using vibrational spectroscopy. The proportion of a monoclinic crystal modification and its dependence on draw ratio is determined by draw temperature, rate and medium (air or water). This is explained by the role of mechanical energy increasing local temperatures within the samples and the corresponding loss of heat to the environment. Monoclinic material acts as a sensitive molecular level thermometer and indicates that temperatures in the vicinity of the melting point can be generated by drawing.
doi_str_mv 10.1016/0032-3861(85)90083-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24720778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0032386185900837</els_id><sourcerecordid>24720778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-9fc9ec313f543d6194334c7a486cbdcc8e8ecb1c692a902ac9e5a73951259ed53</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wMUsRFQYzXOSbIRSfEFBF7oO6Z07GElnajIV-u-d2tKlq7v5zrl8h5BzRm8ZZdUdpYKXwlTsyqhrS6kRpT4gI2a0KDm37JCM9sgxOcn5i1LKFZcjcvMWfe4DFDU2XVr4PnRtEdoihhZ9KpZdXGP_uY7Y4ik5anzMeLa7Y_Lx-PA-fS5nr08v08msBFHJvrQNWATBRKOkqCtmpRAStJemgnkNYNAgzBlUlntLuR9o5bWwinFlsVZiTC63vcvUfa8w924RMmCMvsVulR2XmlOtzQDKLQipyzlh45YpLHxaO0bdZhi3sXYba2eU-xvG6SF2sev3GXxskm8h5H3WKGatEAN2v8VwcP0JmFyGgC1gHRJC7-ou_P_nF9dAdfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24720778</pqid></control><display><type>article</type><title>Plastic deformation in linear polyethylene</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hendra, P.J. ; Taylor, M.A. ; Willis, H.A.</creator><creatorcontrib>Hendra, P.J. ; Taylor, M.A. ; Willis, H.A.</creatorcontrib><description>A detailed study has been made of drawn linear polyethylene using vibrational spectroscopy. The proportion of a monoclinic crystal modification and its dependence on draw ratio is determined by draw temperature, rate and medium (air or water). This is explained by the role of mechanical energy increasing local temperatures within the samples and the corresponding loss of heat to the environment. Monoclinic material acts as a sensitive molecular level thermometer and indicates that temperatures in the vicinity of the melting point can be generated by drawing.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/0032-3861(85)90083-7</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; deformation ; draw ratio ; Exact sciences and technology ; Mechanical properties ; Organic polymers ; Physicochemistry of polymers ; plastic ; polyethylene ; Properties and characterization ; vibrational spectroscopy</subject><ispartof>Polymer (Guilford), 1985-01, Vol.26 (10), p.1501-1506</ispartof><rights>1985</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-9fc9ec313f543d6194334c7a486cbdcc8e8ecb1c692a902ac9e5a73951259ed53</citedby><cites>FETCH-LOGICAL-c364t-9fc9ec313f543d6194334c7a486cbdcc8e8ecb1c692a902ac9e5a73951259ed53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0032-3861(85)90083-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8519933$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hendra, P.J.</creatorcontrib><creatorcontrib>Taylor, M.A.</creatorcontrib><creatorcontrib>Willis, H.A.</creatorcontrib><title>Plastic deformation in linear polyethylene</title><title>Polymer (Guilford)</title><description>A detailed study has been made of drawn linear polyethylene using vibrational spectroscopy. The proportion of a monoclinic crystal modification and its dependence on draw ratio is determined by draw temperature, rate and medium (air or water). This is explained by the role of mechanical energy increasing local temperatures within the samples and the corresponding loss of heat to the environment. Monoclinic material acts as a sensitive molecular level thermometer and indicates that temperatures in the vicinity of the melting point can be generated by drawing.</description><subject>Applied sciences</subject><subject>deformation</subject><subject>draw ratio</subject><subject>Exact sciences and technology</subject><subject>Mechanical properties</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>plastic</subject><subject>polyethylene</subject><subject>Properties and characterization</subject><subject>vibrational spectroscopy</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wMUsRFQYzXOSbIRSfEFBF7oO6Z07GElnajIV-u-d2tKlq7v5zrl8h5BzRm8ZZdUdpYKXwlTsyqhrS6kRpT4gI2a0KDm37JCM9sgxOcn5i1LKFZcjcvMWfe4DFDU2XVr4PnRtEdoihhZ9KpZdXGP_uY7Y4ik5anzMeLa7Y_Lx-PA-fS5nr08v08msBFHJvrQNWATBRKOkqCtmpRAStJemgnkNYNAgzBlUlntLuR9o5bWwinFlsVZiTC63vcvUfa8w924RMmCMvsVulR2XmlOtzQDKLQipyzlh45YpLHxaO0bdZhi3sXYba2eU-xvG6SF2sev3GXxskm8h5H3WKGatEAN2v8VwcP0JmFyGgC1gHRJC7-ou_P_nF9dAdfA</recordid><startdate>19850101</startdate><enddate>19850101</enddate><creator>Hendra, P.J.</creator><creator>Taylor, M.A.</creator><creator>Willis, H.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19850101</creationdate><title>Plastic deformation in linear polyethylene</title><author>Hendra, P.J. ; Taylor, M.A. ; Willis, H.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-9fc9ec313f543d6194334c7a486cbdcc8e8ecb1c692a902ac9e5a73951259ed53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>deformation</topic><topic>draw ratio</topic><topic>Exact sciences and technology</topic><topic>Mechanical properties</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>plastic</topic><topic>polyethylene</topic><topic>Properties and characterization</topic><topic>vibrational spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendra, P.J.</creatorcontrib><creatorcontrib>Taylor, M.A.</creatorcontrib><creatorcontrib>Willis, H.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendra, P.J.</au><au>Taylor, M.A.</au><au>Willis, H.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastic deformation in linear polyethylene</atitle><jtitle>Polymer (Guilford)</jtitle><date>1985-01-01</date><risdate>1985</risdate><volume>26</volume><issue>10</issue><spage>1501</spage><epage>1506</epage><pages>1501-1506</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>A detailed study has been made of drawn linear polyethylene using vibrational spectroscopy. The proportion of a monoclinic crystal modification and its dependence on draw ratio is determined by draw temperature, rate and medium (air or water). This is explained by the role of mechanical energy increasing local temperatures within the samples and the corresponding loss of heat to the environment. Monoclinic material acts as a sensitive molecular level thermometer and indicates that temperatures in the vicinity of the melting point can be generated by drawing.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0032-3861(85)90083-7</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 1985-01, Vol.26 (10), p.1501-1506
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_miscellaneous_24720778
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
deformation
draw ratio
Exact sciences and technology
Mechanical properties
Organic polymers
Physicochemistry of polymers
plastic
polyethylene
Properties and characterization
vibrational spectroscopy
title Plastic deformation in linear polyethylene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastic%20deformation%20in%20linear%20polyethylene&rft.jtitle=Polymer%20(Guilford)&rft.au=Hendra,%20P.J.&rft.date=1985-01-01&rft.volume=26&rft.issue=10&rft.spage=1501&rft.epage=1506&rft.pages=1501-1506&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/0032-3861(85)90083-7&rft_dat=%3Cproquest_cross%3E24720778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24720778&rft_id=info:pmid/&rft_els_id=0032386185900837&rfr_iscdi=true