Plastic deformation in linear polyethylene
A detailed study has been made of drawn linear polyethylene using vibrational spectroscopy. The proportion of a monoclinic crystal modification and its dependence on draw ratio is determined by draw temperature, rate and medium (air or water). This is explained by the role of mechanical energy incre...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 1985-01, Vol.26 (10), p.1501-1506 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1506 |
---|---|
container_issue | 10 |
container_start_page | 1501 |
container_title | Polymer (Guilford) |
container_volume | 26 |
creator | Hendra, P.J. Taylor, M.A. Willis, H.A. |
description | A detailed study has been made of drawn linear polyethylene using vibrational spectroscopy. The proportion of a monoclinic crystal modification and its dependence on draw ratio is determined by draw temperature, rate and medium (air or water). This is explained by the role of mechanical energy increasing local temperatures within the samples and the corresponding loss of heat to the environment. Monoclinic material acts as a sensitive molecular level thermometer and indicates that temperatures in the vicinity of the melting point can be generated by drawing. |
doi_str_mv | 10.1016/0032-3861(85)90083-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_24720778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0032386185900837</els_id><sourcerecordid>24720778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-9fc9ec313f543d6194334c7a486cbdcc8e8ecb1c692a902ac9e5a73951259ed53</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKv_wMUsRFQYzXOSbIRSfEFBF7oO6Z07GElnajIV-u-d2tKlq7v5zrl8h5BzRm8ZZdUdpYKXwlTsyqhrS6kRpT4gI2a0KDm37JCM9sgxOcn5i1LKFZcjcvMWfe4DFDU2XVr4PnRtEdoihhZ9KpZdXGP_uY7Y4ik5anzMeLa7Y_Lx-PA-fS5nr08v08msBFHJvrQNWATBRKOkqCtmpRAStJemgnkNYNAgzBlUlntLuR9o5bWwinFlsVZiTC63vcvUfa8w924RMmCMvsVulR2XmlOtzQDKLQipyzlh45YpLHxaO0bdZhi3sXYba2eU-xvG6SF2sev3GXxskm8h5H3WKGatEAN2v8VwcP0JmFyGgC1gHRJC7-ou_P_nF9dAdfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24720778</pqid></control><display><type>article</type><title>Plastic deformation in linear polyethylene</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hendra, P.J. ; Taylor, M.A. ; Willis, H.A.</creator><creatorcontrib>Hendra, P.J. ; Taylor, M.A. ; Willis, H.A.</creatorcontrib><description>A detailed study has been made of drawn linear polyethylene using vibrational spectroscopy. The proportion of a monoclinic crystal modification and its dependence on draw ratio is determined by draw temperature, rate and medium (air or water). This is explained by the role of mechanical energy increasing local temperatures within the samples and the corresponding loss of heat to the environment. Monoclinic material acts as a sensitive molecular level thermometer and indicates that temperatures in the vicinity of the melting point can be generated by drawing.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/0032-3861(85)90083-7</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; deformation ; draw ratio ; Exact sciences and technology ; Mechanical properties ; Organic polymers ; Physicochemistry of polymers ; plastic ; polyethylene ; Properties and characterization ; vibrational spectroscopy</subject><ispartof>Polymer (Guilford), 1985-01, Vol.26 (10), p.1501-1506</ispartof><rights>1985</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-9fc9ec313f543d6194334c7a486cbdcc8e8ecb1c692a902ac9e5a73951259ed53</citedby><cites>FETCH-LOGICAL-c364t-9fc9ec313f543d6194334c7a486cbdcc8e8ecb1c692a902ac9e5a73951259ed53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0032-3861(85)90083-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8519933$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hendra, P.J.</creatorcontrib><creatorcontrib>Taylor, M.A.</creatorcontrib><creatorcontrib>Willis, H.A.</creatorcontrib><title>Plastic deformation in linear polyethylene</title><title>Polymer (Guilford)</title><description>A detailed study has been made of drawn linear polyethylene using vibrational spectroscopy. The proportion of a monoclinic crystal modification and its dependence on draw ratio is determined by draw temperature, rate and medium (air or water). This is explained by the role of mechanical energy increasing local temperatures within the samples and the corresponding loss of heat to the environment. Monoclinic material acts as a sensitive molecular level thermometer and indicates that temperatures in the vicinity of the melting point can be generated by drawing.</description><subject>Applied sciences</subject><subject>deformation</subject><subject>draw ratio</subject><subject>Exact sciences and technology</subject><subject>Mechanical properties</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>plastic</subject><subject>polyethylene</subject><subject>Properties and characterization</subject><subject>vibrational spectroscopy</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKv_wMUsRFQYzXOSbIRSfEFBF7oO6Z07GElnajIV-u-d2tKlq7v5zrl8h5BzRm8ZZdUdpYKXwlTsyqhrS6kRpT4gI2a0KDm37JCM9sgxOcn5i1LKFZcjcvMWfe4DFDU2XVr4PnRtEdoihhZ9KpZdXGP_uY7Y4ik5anzMeLa7Y_Lx-PA-fS5nr08v08msBFHJvrQNWATBRKOkqCtmpRAStJemgnkNYNAgzBlUlntLuR9o5bWwinFlsVZiTC63vcvUfa8w924RMmCMvsVulR2XmlOtzQDKLQipyzlh45YpLHxaO0bdZhi3sXYba2eU-xvG6SF2sev3GXxskm8h5H3WKGatEAN2v8VwcP0JmFyGgC1gHRJC7-ou_P_nF9dAdfA</recordid><startdate>19850101</startdate><enddate>19850101</enddate><creator>Hendra, P.J.</creator><creator>Taylor, M.A.</creator><creator>Willis, H.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19850101</creationdate><title>Plastic deformation in linear polyethylene</title><author>Hendra, P.J. ; Taylor, M.A. ; Willis, H.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-9fc9ec313f543d6194334c7a486cbdcc8e8ecb1c692a902ac9e5a73951259ed53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Applied sciences</topic><topic>deformation</topic><topic>draw ratio</topic><topic>Exact sciences and technology</topic><topic>Mechanical properties</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>plastic</topic><topic>polyethylene</topic><topic>Properties and characterization</topic><topic>vibrational spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hendra, P.J.</creatorcontrib><creatorcontrib>Taylor, M.A.</creatorcontrib><creatorcontrib>Willis, H.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hendra, P.J.</au><au>Taylor, M.A.</au><au>Willis, H.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plastic deformation in linear polyethylene</atitle><jtitle>Polymer (Guilford)</jtitle><date>1985-01-01</date><risdate>1985</risdate><volume>26</volume><issue>10</issue><spage>1501</spage><epage>1506</epage><pages>1501-1506</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>A detailed study has been made of drawn linear polyethylene using vibrational spectroscopy. The proportion of a monoclinic crystal modification and its dependence on draw ratio is determined by draw temperature, rate and medium (air or water). This is explained by the role of mechanical energy increasing local temperatures within the samples and the corresponding loss of heat to the environment. Monoclinic material acts as a sensitive molecular level thermometer and indicates that temperatures in the vicinity of the melting point can be generated by drawing.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0032-3861(85)90083-7</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 1985-01, Vol.26 (10), p.1501-1506 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_miscellaneous_24720778 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences deformation draw ratio Exact sciences and technology Mechanical properties Organic polymers Physicochemistry of polymers plastic polyethylene Properties and characterization vibrational spectroscopy |
title | Plastic deformation in linear polyethylene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plastic%20deformation%20in%20linear%20polyethylene&rft.jtitle=Polymer%20(Guilford)&rft.au=Hendra,%20P.J.&rft.date=1985-01-01&rft.volume=26&rft.issue=10&rft.spage=1501&rft.epage=1506&rft.pages=1501-1506&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/0032-3861(85)90083-7&rft_dat=%3Cproquest_cross%3E24720778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24720778&rft_id=info:pmid/&rft_els_id=0032386185900837&rfr_iscdi=true |