Improvement of clinical fracture healing – What can be learned from mechano-biological research?
The most significant predictors of reoperation following operative management of fractures are the presence of a third degree open fracture, remaining fracture gaps and a transverse fracture. However clinical studies provide no information regarding the involvement of various soft tissues or how the...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2021-01, Vol.115, p.110148-110148, Article 110148 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110148 |
---|---|
container_issue | |
container_start_page | 110148 |
container_title | Journal of biomechanics |
container_volume | 115 |
creator | Claes, Lutz |
description | The most significant predictors of reoperation following operative management of fractures are the presence of a third degree open fracture, remaining fracture gaps and a transverse fracture. However clinical studies provide no information regarding the involvement of various soft tissues or how the mechanical environment affects revascularisation and bone healing. Here the results of experimental and numerical mechano-biological studies on fracture healing are summarized to provide guidance toward clinical treatment of fractures.
In experimental studies, isolated muscle crush appeared to only temporarily impair fracture healing, with no significant effect to the final bone healing, whereas a more severe muscle trauma significantly reduced callus formation and biomechanical properties of the healed bones. An intraoperative trauma can furthermore impede vascularization. Surgical removal of the haematoma or periosteum disturbs fracture healing. While reaming for intramedullary nailing reduced blood flow in the bone during the early phase of bone healing, it did not affect the stiffness or strength of the final bone healing. The optimal conditions for rapid vascularization and bone healing result from fracture fixation that minimizes shearing movements in the healing zone while allowing moderate compressive movements. Bone healing is increasingly delayed with increasing fracture gap size and critical-size defects do not heal sufficiently independent of the mechanical environment.
The stiffness of fracture fixation systems like nails and external fixators applied in clinical treatments frequently display a too low stiffness, whereas plate systems often cause a too stiff fixation that suppresses bone healing. |
doi_str_mv | 10.1016/j.jbiomech.2020.110148 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2471538622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929020305728</els_id><sourcerecordid>2471538622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-625d7bce14f5c2a2ffe24e2e7a2992f37eb134e57c086c56cdfa348586be0c573</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS0EopfCK1SW2CChXPyTxMkKqqtSKlXqpoil5TjjXkeJXWyniB3v0DfkSXCa2y7YwGqko-8czcxB6ISSLSW0_jBsh876CfR-ywjLYlbL5hna0EbwgvGGPEcbQhgtWtaSI_QqxoEQIkrRvkRHnPOSlrzdoO5iug3-DiZwCXuD9Wid1WrEJiid5gB4DyprN_j3r3v8ba8S1srhDvAIKjjoM-gnvCyinC_yTqO_eQgIEDOh9x9foxdGjRHeHOYx-vr57Hr3pbi8Or_YnV4Wmrd1KmpW9aLTQEtTaaaYMcBKYCAUa1tmuICO8hIqoUlT66rWvVG8bKqm7oDoSvBj9G7NzQd9nyEmOdmoYRyVAz9HyUpBK97UjGX07V_o4Ofg8nYL1RJOa0EyVa-UDj7GAEbeBjup8FNSIpcW5CAfW5BLC3JtIRtPDvFzN0H_ZHt8ewber8AP6LyJ2oLT8IQtPeX0hlZkaTDTzf_TO5tUst7t_OxStn5arZAff2chyIO9twF0kr23_zrmD-jovPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479031670</pqid></control><display><type>article</type><title>Improvement of clinical fracture healing – What can be learned from mechano-biological research?</title><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Claes, Lutz</creator><creatorcontrib>Claes, Lutz</creatorcontrib><description>The most significant predictors of reoperation following operative management of fractures are the presence of a third degree open fracture, remaining fracture gaps and a transverse fracture. However clinical studies provide no information regarding the involvement of various soft tissues or how the mechanical environment affects revascularisation and bone healing. Here the results of experimental and numerical mechano-biological studies on fracture healing are summarized to provide guidance toward clinical treatment of fractures.
In experimental studies, isolated muscle crush appeared to only temporarily impair fracture healing, with no significant effect to the final bone healing, whereas a more severe muscle trauma significantly reduced callus formation and biomechanical properties of the healed bones. An intraoperative trauma can furthermore impede vascularization. Surgical removal of the haematoma or periosteum disturbs fracture healing. While reaming for intramedullary nailing reduced blood flow in the bone during the early phase of bone healing, it did not affect the stiffness or strength of the final bone healing. The optimal conditions for rapid vascularization and bone healing result from fracture fixation that minimizes shearing movements in the healing zone while allowing moderate compressive movements. Bone healing is increasingly delayed with increasing fracture gap size and critical-size defects do not heal sufficiently independent of the mechanical environment.
The stiffness of fracture fixation systems like nails and external fixators applied in clinical treatments frequently display a too low stiffness, whereas plate systems often cause a too stiff fixation that suppresses bone healing.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2020.110148</identifier><identifier>PMID: 33341439</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Animals ; Biology ; Biomechanics ; Biophysics ; Blood flow ; Bone blood flow ; Bone healing ; Bone implants ; Bones ; Callus ; Engineering ; Engineering, Biomedical ; Fixation ; Fracture ; Fractures ; Healing ; Hematoma ; Intramedullary nails ; Life Sciences & Biomedicine ; Mechanical properties ; Muscles ; Periosteum ; Reaming ; Science & Technology ; Shearing ; Sheep ; Soft tissues ; Stiffness ; Technology ; Trauma ; Vascularization</subject><ispartof>Journal of biomechanics, 2021-01, Vol.115, p.110148-110148, Article 110148</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><rights>2020. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>29</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000701681500021</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c396t-625d7bce14f5c2a2ffe24e2e7a2992f37eb134e57c086c56cdfa348586be0c573</citedby><cites>FETCH-LOGICAL-c396t-625d7bce14f5c2a2ffe24e2e7a2992f37eb134e57c086c56cdfa348586be0c573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2479031670?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33341439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Claes, Lutz</creatorcontrib><title>Improvement of clinical fracture healing – What can be learned from mechano-biological research?</title><title>Journal of biomechanics</title><addtitle>J BIOMECH</addtitle><addtitle>J Biomech</addtitle><description>The most significant predictors of reoperation following operative management of fractures are the presence of a third degree open fracture, remaining fracture gaps and a transverse fracture. However clinical studies provide no information regarding the involvement of various soft tissues or how the mechanical environment affects revascularisation and bone healing. Here the results of experimental and numerical mechano-biological studies on fracture healing are summarized to provide guidance toward clinical treatment of fractures.
In experimental studies, isolated muscle crush appeared to only temporarily impair fracture healing, with no significant effect to the final bone healing, whereas a more severe muscle trauma significantly reduced callus formation and biomechanical properties of the healed bones. An intraoperative trauma can furthermore impede vascularization. Surgical removal of the haematoma or periosteum disturbs fracture healing. While reaming for intramedullary nailing reduced blood flow in the bone during the early phase of bone healing, it did not affect the stiffness or strength of the final bone healing. The optimal conditions for rapid vascularization and bone healing result from fracture fixation that minimizes shearing movements in the healing zone while allowing moderate compressive movements. Bone healing is increasingly delayed with increasing fracture gap size and critical-size defects do not heal sufficiently independent of the mechanical environment.
The stiffness of fracture fixation systems like nails and external fixators applied in clinical treatments frequently display a too low stiffness, whereas plate systems often cause a too stiff fixation that suppresses bone healing.</description><subject>Animals</subject><subject>Biology</subject><subject>Biomechanics</subject><subject>Biophysics</subject><subject>Blood flow</subject><subject>Bone blood flow</subject><subject>Bone healing</subject><subject>Bone implants</subject><subject>Bones</subject><subject>Callus</subject><subject>Engineering</subject><subject>Engineering, Biomedical</subject><subject>Fixation</subject><subject>Fracture</subject><subject>Fractures</subject><subject>Healing</subject><subject>Hematoma</subject><subject>Intramedullary nails</subject><subject>Life Sciences & Biomedicine</subject><subject>Mechanical properties</subject><subject>Muscles</subject><subject>Periosteum</subject><subject>Reaming</subject><subject>Science & Technology</subject><subject>Shearing</subject><subject>Sheep</subject><subject>Soft tissues</subject><subject>Stiffness</subject><subject>Technology</subject><subject>Trauma</subject><subject>Vascularization</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkc1u1TAQhS0EopfCK1SW2CChXPyTxMkKqqtSKlXqpoil5TjjXkeJXWyniB3v0DfkSXCa2y7YwGqko-8czcxB6ISSLSW0_jBsh876CfR-ywjLYlbL5hna0EbwgvGGPEcbQhgtWtaSI_QqxoEQIkrRvkRHnPOSlrzdoO5iug3-DiZwCXuD9Wid1WrEJiid5gB4DyprN_j3r3v8ba8S1srhDvAIKjjoM-gnvCyinC_yTqO_eQgIEDOh9x9foxdGjRHeHOYx-vr57Hr3pbi8Or_YnV4Wmrd1KmpW9aLTQEtTaaaYMcBKYCAUa1tmuICO8hIqoUlT66rWvVG8bKqm7oDoSvBj9G7NzQd9nyEmOdmoYRyVAz9HyUpBK97UjGX07V_o4Ofg8nYL1RJOa0EyVa-UDj7GAEbeBjup8FNSIpcW5CAfW5BLC3JtIRtPDvFzN0H_ZHt8ewber8AP6LyJ2oLT8IQtPeX0hlZkaTDTzf_TO5tUst7t_OxStn5arZAff2chyIO9twF0kr23_zrmD-jovPM</recordid><startdate>20210122</startdate><enddate>20210122</enddate><creator>Claes, Lutz</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20210122</creationdate><title>Improvement of clinical fracture healing – What can be learned from mechano-biological research?</title><author>Claes, Lutz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-625d7bce14f5c2a2ffe24e2e7a2992f37eb134e57c086c56cdfa348586be0c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biology</topic><topic>Biomechanics</topic><topic>Biophysics</topic><topic>Blood flow</topic><topic>Bone blood flow</topic><topic>Bone healing</topic><topic>Bone implants</topic><topic>Bones</topic><topic>Callus</topic><topic>Engineering</topic><topic>Engineering, Biomedical</topic><topic>Fixation</topic><topic>Fracture</topic><topic>Fractures</topic><topic>Healing</topic><topic>Hematoma</topic><topic>Intramedullary nails</topic><topic>Life Sciences & Biomedicine</topic><topic>Mechanical properties</topic><topic>Muscles</topic><topic>Periosteum</topic><topic>Reaming</topic><topic>Science & Technology</topic><topic>Shearing</topic><topic>Sheep</topic><topic>Soft tissues</topic><topic>Stiffness</topic><topic>Technology</topic><topic>Trauma</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Claes, Lutz</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Claes, Lutz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of clinical fracture healing – What can be learned from mechano-biological research?</atitle><jtitle>Journal of biomechanics</jtitle><stitle>J BIOMECH</stitle><addtitle>J Biomech</addtitle><date>2021-01-22</date><risdate>2021</risdate><volume>115</volume><spage>110148</spage><epage>110148</epage><pages>110148-110148</pages><artnum>110148</artnum><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>The most significant predictors of reoperation following operative management of fractures are the presence of a third degree open fracture, remaining fracture gaps and a transverse fracture. However clinical studies provide no information regarding the involvement of various soft tissues or how the mechanical environment affects revascularisation and bone healing. Here the results of experimental and numerical mechano-biological studies on fracture healing are summarized to provide guidance toward clinical treatment of fractures.
In experimental studies, isolated muscle crush appeared to only temporarily impair fracture healing, with no significant effect to the final bone healing, whereas a more severe muscle trauma significantly reduced callus formation and biomechanical properties of the healed bones. An intraoperative trauma can furthermore impede vascularization. Surgical removal of the haematoma or periosteum disturbs fracture healing. While reaming for intramedullary nailing reduced blood flow in the bone during the early phase of bone healing, it did not affect the stiffness or strength of the final bone healing. The optimal conditions for rapid vascularization and bone healing result from fracture fixation that minimizes shearing movements in the healing zone while allowing moderate compressive movements. Bone healing is increasingly delayed with increasing fracture gap size and critical-size defects do not heal sufficiently independent of the mechanical environment.
The stiffness of fracture fixation systems like nails and external fixators applied in clinical treatments frequently display a too low stiffness, whereas plate systems often cause a too stiff fixation that suppresses bone healing.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><pmid>33341439</pmid><doi>10.1016/j.jbiomech.2020.110148</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2021-01, Vol.115, p.110148-110148, Article 110148 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_2471538622 |
source | Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Animals Biology Biomechanics Biophysics Blood flow Bone blood flow Bone healing Bone implants Bones Callus Engineering Engineering, Biomedical Fixation Fracture Fractures Healing Hematoma Intramedullary nails Life Sciences & Biomedicine Mechanical properties Muscles Periosteum Reaming Science & Technology Shearing Sheep Soft tissues Stiffness Technology Trauma Vascularization |
title | Improvement of clinical fracture healing – What can be learned from mechano-biological research? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20clinical%20fracture%20healing%20%E2%80%93%20What%20can%20be%20learned%20from%20mechano-biological%20research?&rft.jtitle=Journal%20of%20biomechanics&rft.au=Claes,%20Lutz&rft.date=2021-01-22&rft.volume=115&rft.spage=110148&rft.epage=110148&rft.pages=110148-110148&rft.artnum=110148&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2020.110148&rft_dat=%3Cproquest_cross%3E2471538622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479031670&rft_id=info:pmid/33341439&rft_els_id=S0021929020305728&rfr_iscdi=true |