Fracture toughness of bone at the microscale

Bone's hierarchical arrangement of collagen and mineral generates a confluence of toughening mechanisms acting at every length scale from the molecular to the macroscopic level. Molecular defects, disease, and age alter bone structure at different levels and diminish its fracture resistance. Ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2021-02, Vol.121, p.475-483
Hauptverfasser: Aldegaither, Nouf, Sernicola, Giorgio, Mesgarnejad, Ataollah, Karma, Alain, Balint, Daniel, Wang, Jianglong, Saiz, Eduardo, Shefelbine, Sandra J., Porter, Alexandra E., Giuliani, Finn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue
container_start_page 475
container_title Acta biomaterialia
container_volume 121
creator Aldegaither, Nouf
Sernicola, Giorgio
Mesgarnejad, Ataollah
Karma, Alain
Balint, Daniel
Wang, Jianglong
Saiz, Eduardo
Shefelbine, Sandra J.
Porter, Alexandra E.
Giuliani, Finn
description Bone's hierarchical arrangement of collagen and mineral generates a confluence of toughening mechanisms acting at every length scale from the molecular to the macroscopic level. Molecular defects, disease, and age alter bone structure at different levels and diminish its fracture resistance. However, the inability to isolate and quantify the influence of specific features hampers our understanding and the development of new therapies. Here, we combine in situ micromechanical testing, transmission electron microscopy and phase-field modelling to quantify intrinsic deformation and toughening at the fibrillar level and unveil the critical role of fibril orientation on crack deflection. At this level dry bone is highly anisotropic, with fracture energies ranging between 5 and 30 J/m2 depending on the direction of crack propagation. These values are lower than previously calculated for dehydrated samples from large-scale tests. However, they still suggest a significant amount of energy dissipation. This approach provides a new tool to uncouple and quantify, from the bottom up, the roles played by the structural features and constituents of bone on fracture and how can they be affected by different pathologies. The methodology can be extended to support the rational development of new structural composites. [Display omitted]
doi_str_mv 10.1016/j.actbio.2020.12.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2471536535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120307212</els_id><sourcerecordid>2471536535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-dcd125c2a57c377f81410bda00caa6378a0b327c7e4cb38b6cc6084ee6db8e103</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMozjj6BiIFNy5szV-TuBFkcFQYcKPrkKa3TkvbjEkr-PZm6OjChasbLuf7khyEzgnOCCbipsmMHYraZRTTuKIZxvIAzYmSKpW5UIfxLDlNJRZkhk5CaDBmilB1jGaMMSwpV3N0vfKxZvSQDG583_QQQuKqpHA9JGZIhg0kXW29C9a0cIqOKtMGONvPBXpbPbwun9L1y-Pz8n6dWs7EkJa2JDS31OTSMikrRTjBRWkwtsYIJpXBBaPSSuC2YKoQ1gqsOIAoCwUEswW6mnq33n2MEAbd1cFC25oe3Bg05ZLkTOQsj-jlH7Rxo-_j6yJ1SxnJFZWR4hO1-0nwUOmtrzvjvzTBemdTN3qyqXc2NaE62oyxi335WHRQ_oZ-9EXgbgIg2viswetga-gtlLUHO-jS1f_f8A0AL4WY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492315827</pqid></control><display><type>article</type><title>Fracture toughness of bone at the microscale</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Aldegaither, Nouf ; Sernicola, Giorgio ; Mesgarnejad, Ataollah ; Karma, Alain ; Balint, Daniel ; Wang, Jianglong ; Saiz, Eduardo ; Shefelbine, Sandra J. ; Porter, Alexandra E. ; Giuliani, Finn</creator><creatorcontrib>Aldegaither, Nouf ; Sernicola, Giorgio ; Mesgarnejad, Ataollah ; Karma, Alain ; Balint, Daniel ; Wang, Jianglong ; Saiz, Eduardo ; Shefelbine, Sandra J. ; Porter, Alexandra E. ; Giuliani, Finn</creatorcontrib><description>Bone's hierarchical arrangement of collagen and mineral generates a confluence of toughening mechanisms acting at every length scale from the molecular to the macroscopic level. Molecular defects, disease, and age alter bone structure at different levels and diminish its fracture resistance. However, the inability to isolate and quantify the influence of specific features hampers our understanding and the development of new therapies. Here, we combine in situ micromechanical testing, transmission electron microscopy and phase-field modelling to quantify intrinsic deformation and toughening at the fibrillar level and unveil the critical role of fibril orientation on crack deflection. At this level dry bone is highly anisotropic, with fracture energies ranging between 5 and 30 J/m2 depending on the direction of crack propagation. These values are lower than previously calculated for dehydrated samples from large-scale tests. However, they still suggest a significant amount of energy dissipation. This approach provides a new tool to uncouple and quantify, from the bottom up, the roles played by the structural features and constituents of bone on fracture and how can they be affected by different pathologies. The methodology can be extended to support the rational development of new structural composites. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.12.007</identifier><identifier>PMID: 33307248</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Age composition ; Anisotropy ; Bone ; Bone and Bones ; Collagen ; Crack propagation ; Dehydration ; Double cantilever beam ; Energy dissipation ; Fibrils ; Fracture energy ; Fracture toughness ; Fractures ; Fractures, Bone ; Humans ; Mechanical properties ; Micro scale ; Transmission electron microscopy</subject><ispartof>Acta biomaterialia, 2021-02, Vol.121, p.475-483</ispartof><rights>2020 Acta Materialia Inc.</rights><rights>Copyright © 2020 Acta Materialia Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-dcd125c2a57c377f81410bda00caa6378a0b327c7e4cb38b6cc6084ee6db8e103</citedby><cites>FETCH-LOGICAL-c436t-dcd125c2a57c377f81410bda00caa6378a0b327c7e4cb38b6cc6084ee6db8e103</cites><orcidid>0000-0003-0347-4896 ; 0000-0002-0259-934X ; 0000-0003-1295-105X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706120307212$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33307248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aldegaither, Nouf</creatorcontrib><creatorcontrib>Sernicola, Giorgio</creatorcontrib><creatorcontrib>Mesgarnejad, Ataollah</creatorcontrib><creatorcontrib>Karma, Alain</creatorcontrib><creatorcontrib>Balint, Daniel</creatorcontrib><creatorcontrib>Wang, Jianglong</creatorcontrib><creatorcontrib>Saiz, Eduardo</creatorcontrib><creatorcontrib>Shefelbine, Sandra J.</creatorcontrib><creatorcontrib>Porter, Alexandra E.</creatorcontrib><creatorcontrib>Giuliani, Finn</creatorcontrib><title>Fracture toughness of bone at the microscale</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Bone's hierarchical arrangement of collagen and mineral generates a confluence of toughening mechanisms acting at every length scale from the molecular to the macroscopic level. Molecular defects, disease, and age alter bone structure at different levels and diminish its fracture resistance. However, the inability to isolate and quantify the influence of specific features hampers our understanding and the development of new therapies. Here, we combine in situ micromechanical testing, transmission electron microscopy and phase-field modelling to quantify intrinsic deformation and toughening at the fibrillar level and unveil the critical role of fibril orientation on crack deflection. At this level dry bone is highly anisotropic, with fracture energies ranging between 5 and 30 J/m2 depending on the direction of crack propagation. These values are lower than previously calculated for dehydrated samples from large-scale tests. However, they still suggest a significant amount of energy dissipation. This approach provides a new tool to uncouple and quantify, from the bottom up, the roles played by the structural features and constituents of bone on fracture and how can they be affected by different pathologies. The methodology can be extended to support the rational development of new structural composites. [Display omitted]</description><subject>Age composition</subject><subject>Anisotropy</subject><subject>Bone</subject><subject>Bone and Bones</subject><subject>Collagen</subject><subject>Crack propagation</subject><subject>Dehydration</subject><subject>Double cantilever beam</subject><subject>Energy dissipation</subject><subject>Fibrils</subject><subject>Fracture energy</subject><subject>Fracture toughness</subject><subject>Fractures</subject><subject>Fractures, Bone</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Micro scale</subject><subject>Transmission electron microscopy</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1KxDAURoMozjj6BiIFNy5szV-TuBFkcFQYcKPrkKa3TkvbjEkr-PZm6OjChasbLuf7khyEzgnOCCbipsmMHYraZRTTuKIZxvIAzYmSKpW5UIfxLDlNJRZkhk5CaDBmilB1jGaMMSwpV3N0vfKxZvSQDG583_QQQuKqpHA9JGZIhg0kXW29C9a0cIqOKtMGONvPBXpbPbwun9L1y-Pz8n6dWs7EkJa2JDS31OTSMikrRTjBRWkwtsYIJpXBBaPSSuC2YKoQ1gqsOIAoCwUEswW6mnq33n2MEAbd1cFC25oe3Bg05ZLkTOQsj-jlH7Rxo-_j6yJ1SxnJFZWR4hO1-0nwUOmtrzvjvzTBemdTN3qyqXc2NaE62oyxi335WHRQ_oZ-9EXgbgIg2viswetga-gtlLUHO-jS1f_f8A0AL4WY</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Aldegaither, Nouf</creator><creator>Sernicola, Giorgio</creator><creator>Mesgarnejad, Ataollah</creator><creator>Karma, Alain</creator><creator>Balint, Daniel</creator><creator>Wang, Jianglong</creator><creator>Saiz, Eduardo</creator><creator>Shefelbine, Sandra J.</creator><creator>Porter, Alexandra E.</creator><creator>Giuliani, Finn</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0347-4896</orcidid><orcidid>https://orcid.org/0000-0002-0259-934X</orcidid><orcidid>https://orcid.org/0000-0003-1295-105X</orcidid></search><sort><creationdate>202102</creationdate><title>Fracture toughness of bone at the microscale</title><author>Aldegaither, Nouf ; Sernicola, Giorgio ; Mesgarnejad, Ataollah ; Karma, Alain ; Balint, Daniel ; Wang, Jianglong ; Saiz, Eduardo ; Shefelbine, Sandra J. ; Porter, Alexandra E. ; Giuliani, Finn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-dcd125c2a57c377f81410bda00caa6378a0b327c7e4cb38b6cc6084ee6db8e103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age composition</topic><topic>Anisotropy</topic><topic>Bone</topic><topic>Bone and Bones</topic><topic>Collagen</topic><topic>Crack propagation</topic><topic>Dehydration</topic><topic>Double cantilever beam</topic><topic>Energy dissipation</topic><topic>Fibrils</topic><topic>Fracture energy</topic><topic>Fracture toughness</topic><topic>Fractures</topic><topic>Fractures, Bone</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Micro scale</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aldegaither, Nouf</creatorcontrib><creatorcontrib>Sernicola, Giorgio</creatorcontrib><creatorcontrib>Mesgarnejad, Ataollah</creatorcontrib><creatorcontrib>Karma, Alain</creatorcontrib><creatorcontrib>Balint, Daniel</creatorcontrib><creatorcontrib>Wang, Jianglong</creatorcontrib><creatorcontrib>Saiz, Eduardo</creatorcontrib><creatorcontrib>Shefelbine, Sandra J.</creatorcontrib><creatorcontrib>Porter, Alexandra E.</creatorcontrib><creatorcontrib>Giuliani, Finn</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aldegaither, Nouf</au><au>Sernicola, Giorgio</au><au>Mesgarnejad, Ataollah</au><au>Karma, Alain</au><au>Balint, Daniel</au><au>Wang, Jianglong</au><au>Saiz, Eduardo</au><au>Shefelbine, Sandra J.</au><au>Porter, Alexandra E.</au><au>Giuliani, Finn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture toughness of bone at the microscale</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2021-02</date><risdate>2021</risdate><volume>121</volume><spage>475</spage><epage>483</epage><pages>475-483</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Bone's hierarchical arrangement of collagen and mineral generates a confluence of toughening mechanisms acting at every length scale from the molecular to the macroscopic level. Molecular defects, disease, and age alter bone structure at different levels and diminish its fracture resistance. However, the inability to isolate and quantify the influence of specific features hampers our understanding and the development of new therapies. Here, we combine in situ micromechanical testing, transmission electron microscopy and phase-field modelling to quantify intrinsic deformation and toughening at the fibrillar level and unveil the critical role of fibril orientation on crack deflection. At this level dry bone is highly anisotropic, with fracture energies ranging between 5 and 30 J/m2 depending on the direction of crack propagation. These values are lower than previously calculated for dehydrated samples from large-scale tests. However, they still suggest a significant amount of energy dissipation. This approach provides a new tool to uncouple and quantify, from the bottom up, the roles played by the structural features and constituents of bone on fracture and how can they be affected by different pathologies. The methodology can be extended to support the rational development of new structural composites. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33307248</pmid><doi>10.1016/j.actbio.2020.12.007</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0347-4896</orcidid><orcidid>https://orcid.org/0000-0002-0259-934X</orcidid><orcidid>https://orcid.org/0000-0003-1295-105X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2021-02, Vol.121, p.475-483
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_2471536535
source MEDLINE; Elsevier ScienceDirect Journals
subjects Age composition
Anisotropy
Bone
Bone and Bones
Collagen
Crack propagation
Dehydration
Double cantilever beam
Energy dissipation
Fibrils
Fracture energy
Fracture toughness
Fractures
Fractures, Bone
Humans
Mechanical properties
Micro scale
Transmission electron microscopy
title Fracture toughness of bone at the microscale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20toughness%20of%20bone%20at%20the%20microscale&rft.jtitle=Acta%20biomaterialia&rft.au=Aldegaither,%20Nouf&rft.date=2021-02&rft.volume=121&rft.spage=475&rft.epage=483&rft.pages=475-483&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.12.007&rft_dat=%3Cproquest_cross%3E2471536535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492315827&rft_id=info:pmid/33307248&rft_els_id=S1742706120307212&rfr_iscdi=true