Fracture toughness of bone at the microscale
Bone's hierarchical arrangement of collagen and mineral generates a confluence of toughening mechanisms acting at every length scale from the molecular to the macroscopic level. Molecular defects, disease, and age alter bone structure at different levels and diminish its fracture resistance. Ho...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2021-02, Vol.121, p.475-483 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 483 |
---|---|
container_issue | |
container_start_page | 475 |
container_title | Acta biomaterialia |
container_volume | 121 |
creator | Aldegaither, Nouf Sernicola, Giorgio Mesgarnejad, Ataollah Karma, Alain Balint, Daniel Wang, Jianglong Saiz, Eduardo Shefelbine, Sandra J. Porter, Alexandra E. Giuliani, Finn |
description | Bone's hierarchical arrangement of collagen and mineral generates a confluence of toughening mechanisms acting at every length scale from the molecular to the macroscopic level. Molecular defects, disease, and age alter bone structure at different levels and diminish its fracture resistance. However, the inability to isolate and quantify the influence of specific features hampers our understanding and the development of new therapies. Here, we combine in situ micromechanical testing, transmission electron microscopy and phase-field modelling to quantify intrinsic deformation and toughening at the fibrillar level and unveil the critical role of fibril orientation on crack deflection. At this level dry bone is highly anisotropic, with fracture energies ranging between 5 and 30 J/m2 depending on the direction of crack propagation. These values are lower than previously calculated for dehydrated samples from large-scale tests. However, they still suggest a significant amount of energy dissipation. This approach provides a new tool to uncouple and quantify, from the bottom up, the roles played by the structural features and constituents of bone on fracture and how can they be affected by different pathologies. The methodology can be extended to support the rational development of new structural composites.
[Display omitted] |
doi_str_mv | 10.1016/j.actbio.2020.12.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2471536535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120307212</els_id><sourcerecordid>2471536535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-dcd125c2a57c377f81410bda00caa6378a0b327c7e4cb38b6cc6084ee6db8e103</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMozjj6BiIFNy5szV-TuBFkcFQYcKPrkKa3TkvbjEkr-PZm6OjChasbLuf7khyEzgnOCCbipsmMHYraZRTTuKIZxvIAzYmSKpW5UIfxLDlNJRZkhk5CaDBmilB1jGaMMSwpV3N0vfKxZvSQDG583_QQQuKqpHA9JGZIhg0kXW29C9a0cIqOKtMGONvPBXpbPbwun9L1y-Pz8n6dWs7EkJa2JDS31OTSMikrRTjBRWkwtsYIJpXBBaPSSuC2YKoQ1gqsOIAoCwUEswW6mnq33n2MEAbd1cFC25oe3Bg05ZLkTOQsj-jlH7Rxo-_j6yJ1SxnJFZWR4hO1-0nwUOmtrzvjvzTBemdTN3qyqXc2NaE62oyxi335WHRQ_oZ-9EXgbgIg2viswetga-gtlLUHO-jS1f_f8A0AL4WY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492315827</pqid></control><display><type>article</type><title>Fracture toughness of bone at the microscale</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Aldegaither, Nouf ; Sernicola, Giorgio ; Mesgarnejad, Ataollah ; Karma, Alain ; Balint, Daniel ; Wang, Jianglong ; Saiz, Eduardo ; Shefelbine, Sandra J. ; Porter, Alexandra E. ; Giuliani, Finn</creator><creatorcontrib>Aldegaither, Nouf ; Sernicola, Giorgio ; Mesgarnejad, Ataollah ; Karma, Alain ; Balint, Daniel ; Wang, Jianglong ; Saiz, Eduardo ; Shefelbine, Sandra J. ; Porter, Alexandra E. ; Giuliani, Finn</creatorcontrib><description>Bone's hierarchical arrangement of collagen and mineral generates a confluence of toughening mechanisms acting at every length scale from the molecular to the macroscopic level. Molecular defects, disease, and age alter bone structure at different levels and diminish its fracture resistance. However, the inability to isolate and quantify the influence of specific features hampers our understanding and the development of new therapies. Here, we combine in situ micromechanical testing, transmission electron microscopy and phase-field modelling to quantify intrinsic deformation and toughening at the fibrillar level and unveil the critical role of fibril orientation on crack deflection. At this level dry bone is highly anisotropic, with fracture energies ranging between 5 and 30 J/m2 depending on the direction of crack propagation. These values are lower than previously calculated for dehydrated samples from large-scale tests. However, they still suggest a significant amount of energy dissipation. This approach provides a new tool to uncouple and quantify, from the bottom up, the roles played by the structural features and constituents of bone on fracture and how can they be affected by different pathologies. The methodology can be extended to support the rational development of new structural composites.
[Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.12.007</identifier><identifier>PMID: 33307248</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Age composition ; Anisotropy ; Bone ; Bone and Bones ; Collagen ; Crack propagation ; Dehydration ; Double cantilever beam ; Energy dissipation ; Fibrils ; Fracture energy ; Fracture toughness ; Fractures ; Fractures, Bone ; Humans ; Mechanical properties ; Micro scale ; Transmission electron microscopy</subject><ispartof>Acta biomaterialia, 2021-02, Vol.121, p.475-483</ispartof><rights>2020 Acta Materialia Inc.</rights><rights>Copyright © 2020 Acta Materialia Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Feb 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-dcd125c2a57c377f81410bda00caa6378a0b327c7e4cb38b6cc6084ee6db8e103</citedby><cites>FETCH-LOGICAL-c436t-dcd125c2a57c377f81410bda00caa6378a0b327c7e4cb38b6cc6084ee6db8e103</cites><orcidid>0000-0003-0347-4896 ; 0000-0002-0259-934X ; 0000-0003-1295-105X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706120307212$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33307248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aldegaither, Nouf</creatorcontrib><creatorcontrib>Sernicola, Giorgio</creatorcontrib><creatorcontrib>Mesgarnejad, Ataollah</creatorcontrib><creatorcontrib>Karma, Alain</creatorcontrib><creatorcontrib>Balint, Daniel</creatorcontrib><creatorcontrib>Wang, Jianglong</creatorcontrib><creatorcontrib>Saiz, Eduardo</creatorcontrib><creatorcontrib>Shefelbine, Sandra J.</creatorcontrib><creatorcontrib>Porter, Alexandra E.</creatorcontrib><creatorcontrib>Giuliani, Finn</creatorcontrib><title>Fracture toughness of bone at the microscale</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Bone's hierarchical arrangement of collagen and mineral generates a confluence of toughening mechanisms acting at every length scale from the molecular to the macroscopic level. Molecular defects, disease, and age alter bone structure at different levels and diminish its fracture resistance. However, the inability to isolate and quantify the influence of specific features hampers our understanding and the development of new therapies. Here, we combine in situ micromechanical testing, transmission electron microscopy and phase-field modelling to quantify intrinsic deformation and toughening at the fibrillar level and unveil the critical role of fibril orientation on crack deflection. At this level dry bone is highly anisotropic, with fracture energies ranging between 5 and 30 J/m2 depending on the direction of crack propagation. These values are lower than previously calculated for dehydrated samples from large-scale tests. However, they still suggest a significant amount of energy dissipation. This approach provides a new tool to uncouple and quantify, from the bottom up, the roles played by the structural features and constituents of bone on fracture and how can they be affected by different pathologies. The methodology can be extended to support the rational development of new structural composites.
[Display omitted]</description><subject>Age composition</subject><subject>Anisotropy</subject><subject>Bone</subject><subject>Bone and Bones</subject><subject>Collagen</subject><subject>Crack propagation</subject><subject>Dehydration</subject><subject>Double cantilever beam</subject><subject>Energy dissipation</subject><subject>Fibrils</subject><subject>Fracture energy</subject><subject>Fracture toughness</subject><subject>Fractures</subject><subject>Fractures, Bone</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Micro scale</subject><subject>Transmission electron microscopy</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1KxDAURoMozjj6BiIFNy5szV-TuBFkcFQYcKPrkKa3TkvbjEkr-PZm6OjChasbLuf7khyEzgnOCCbipsmMHYraZRTTuKIZxvIAzYmSKpW5UIfxLDlNJRZkhk5CaDBmilB1jGaMMSwpV3N0vfKxZvSQDG583_QQQuKqpHA9JGZIhg0kXW29C9a0cIqOKtMGONvPBXpbPbwun9L1y-Pz8n6dWs7EkJa2JDS31OTSMikrRTjBRWkwtsYIJpXBBaPSSuC2YKoQ1gqsOIAoCwUEswW6mnq33n2MEAbd1cFC25oe3Bg05ZLkTOQsj-jlH7Rxo-_j6yJ1SxnJFZWR4hO1-0nwUOmtrzvjvzTBemdTN3qyqXc2NaE62oyxi335WHRQ_oZ-9EXgbgIg2viswetga-gtlLUHO-jS1f_f8A0AL4WY</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Aldegaither, Nouf</creator><creator>Sernicola, Giorgio</creator><creator>Mesgarnejad, Ataollah</creator><creator>Karma, Alain</creator><creator>Balint, Daniel</creator><creator>Wang, Jianglong</creator><creator>Saiz, Eduardo</creator><creator>Shefelbine, Sandra J.</creator><creator>Porter, Alexandra E.</creator><creator>Giuliani, Finn</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0347-4896</orcidid><orcidid>https://orcid.org/0000-0002-0259-934X</orcidid><orcidid>https://orcid.org/0000-0003-1295-105X</orcidid></search><sort><creationdate>202102</creationdate><title>Fracture toughness of bone at the microscale</title><author>Aldegaither, Nouf ; Sernicola, Giorgio ; Mesgarnejad, Ataollah ; Karma, Alain ; Balint, Daniel ; Wang, Jianglong ; Saiz, Eduardo ; Shefelbine, Sandra J. ; Porter, Alexandra E. ; Giuliani, Finn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-dcd125c2a57c377f81410bda00caa6378a0b327c7e4cb38b6cc6084ee6db8e103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age composition</topic><topic>Anisotropy</topic><topic>Bone</topic><topic>Bone and Bones</topic><topic>Collagen</topic><topic>Crack propagation</topic><topic>Dehydration</topic><topic>Double cantilever beam</topic><topic>Energy dissipation</topic><topic>Fibrils</topic><topic>Fracture energy</topic><topic>Fracture toughness</topic><topic>Fractures</topic><topic>Fractures, Bone</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Micro scale</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aldegaither, Nouf</creatorcontrib><creatorcontrib>Sernicola, Giorgio</creatorcontrib><creatorcontrib>Mesgarnejad, Ataollah</creatorcontrib><creatorcontrib>Karma, Alain</creatorcontrib><creatorcontrib>Balint, Daniel</creatorcontrib><creatorcontrib>Wang, Jianglong</creatorcontrib><creatorcontrib>Saiz, Eduardo</creatorcontrib><creatorcontrib>Shefelbine, Sandra J.</creatorcontrib><creatorcontrib>Porter, Alexandra E.</creatorcontrib><creatorcontrib>Giuliani, Finn</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aldegaither, Nouf</au><au>Sernicola, Giorgio</au><au>Mesgarnejad, Ataollah</au><au>Karma, Alain</au><au>Balint, Daniel</au><au>Wang, Jianglong</au><au>Saiz, Eduardo</au><au>Shefelbine, Sandra J.</au><au>Porter, Alexandra E.</au><au>Giuliani, Finn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture toughness of bone at the microscale</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2021-02</date><risdate>2021</risdate><volume>121</volume><spage>475</spage><epage>483</epage><pages>475-483</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Bone's hierarchical arrangement of collagen and mineral generates a confluence of toughening mechanisms acting at every length scale from the molecular to the macroscopic level. Molecular defects, disease, and age alter bone structure at different levels and diminish its fracture resistance. However, the inability to isolate and quantify the influence of specific features hampers our understanding and the development of new therapies. Here, we combine in situ micromechanical testing, transmission electron microscopy and phase-field modelling to quantify intrinsic deformation and toughening at the fibrillar level and unveil the critical role of fibril orientation on crack deflection. At this level dry bone is highly anisotropic, with fracture energies ranging between 5 and 30 J/m2 depending on the direction of crack propagation. These values are lower than previously calculated for dehydrated samples from large-scale tests. However, they still suggest a significant amount of energy dissipation. This approach provides a new tool to uncouple and quantify, from the bottom up, the roles played by the structural features and constituents of bone on fracture and how can they be affected by different pathologies. The methodology can be extended to support the rational development of new structural composites.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33307248</pmid><doi>10.1016/j.actbio.2020.12.007</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0347-4896</orcidid><orcidid>https://orcid.org/0000-0002-0259-934X</orcidid><orcidid>https://orcid.org/0000-0003-1295-105X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2021-02, Vol.121, p.475-483 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_2471536535 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Age composition Anisotropy Bone Bone and Bones Collagen Crack propagation Dehydration Double cantilever beam Energy dissipation Fibrils Fracture energy Fracture toughness Fractures Fractures, Bone Humans Mechanical properties Micro scale Transmission electron microscopy |
title | Fracture toughness of bone at the microscale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20toughness%20of%20bone%20at%20the%20microscale&rft.jtitle=Acta%20biomaterialia&rft.au=Aldegaither,%20Nouf&rft.date=2021-02&rft.volume=121&rft.spage=475&rft.epage=483&rft.pages=475-483&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.12.007&rft_dat=%3Cproquest_cross%3E2471536535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2492315827&rft_id=info:pmid/33307248&rft_els_id=S1742706120307212&rfr_iscdi=true |