A new deep learning method for displacement tracking from ultrasound RF signals of vascular walls

•A new architecture of motion tracking has been proposed.•Deep learning method for displacement tracking of the vessel wall from the ultrasound RF signals.•It improves the accuracy in vessel wall motion tracking in comparsion with traditional methods. It is necessary to monitor the mechanical proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computerized medical imaging and graphics 2021-01, Vol.87, p.101819-101819, Article 101819
Hauptverfasser: Xiao, Chenhui, Li, Zhenzhou, Lu, Jianfeng, Wang, Jinyan, Zheng, Haoteng, Bi, Zuyue, Chen, Mengyang, Mao, Rui, Lu, Minhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101819
container_issue
container_start_page 101819
container_title Computerized medical imaging and graphics
container_volume 87
creator Xiao, Chenhui
Li, Zhenzhou
Lu, Jianfeng
Wang, Jinyan
Zheng, Haoteng
Bi, Zuyue
Chen, Mengyang
Mao, Rui
Lu, Minhua
description •A new architecture of motion tracking has been proposed.•Deep learning method for displacement tracking of the vessel wall from the ultrasound RF signals.•It improves the accuracy in vessel wall motion tracking in comparsion with traditional methods. It is necessary to monitor the mechanical properties of arteries which directly related to cardiovascular diseases (CVDs) in the early stages. In this study, we proposed a new method based on deep learning (DL) to track the displacement of the vessel wall from the ultrasound radio-frequency (RF) signals, which is a key technique to achieve quantitative measurement of vascular biomechanics. In comparison with traditional method, both results on simulation and experimental carotid artery data demonstrated that the DL method has higher accuracy for motion tracking of artery walls. Hence, the DL method can be widely applied so that can predict the early pathology of cardiovascular system.
doi_str_mv 10.1016/j.compmedimag.2020.101819
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2471536230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895611120301142</els_id><sourcerecordid>2471536230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-27aefdd2e0719f46b7464491f31c4f27d8fdee7440733a3a6ba506b2e3a28c6d3</originalsourceid><addsrcrecordid>eNqNkMlu2zAQQIkiReMsvxCwt1zkcjMpHQ2jaQsEKBCkZ4Iih64cSlRJyUb-vnSdBjnmNODMm4UPoc-ULCmh8stuaWM_9uC63myXjLB_-Zo2H9CC1qqpiFL0DC1I3awqSSk9Rxc57wgppKKf0DnnXFAhVwtk1niAA3YAIw5g0tANW9zD9Ds67GPCrstjMBZ6GCY8JWOfjoBPscdzKO8c58Hhhzucu-1gQsbR473Jdg4m4YMJIV-hj74U4PolXqJfd18fN9-r-5_ffmzW95XlSk0VUwa8cwzKhY0XslVCCtFQz6kVnilX-3KkEoIozg03sjUrIlsG3LDaSscv0e1p7pjinxnypPsuWwjBDBDnrJlQdMUl46SgzQm1KeacwOsxFZXpWVOij4b1Tr8xrI-G9clw6b15WTO3pf7a-V9pATYnAMpn9x0knW0Hgy2zEthJu9i9Y81fmrOTaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471536230</pqid></control><display><type>article</type><title>A new deep learning method for displacement tracking from ultrasound RF signals of vascular walls</title><source>Elsevier ScienceDirect Journals</source><creator>Xiao, Chenhui ; Li, Zhenzhou ; Lu, Jianfeng ; Wang, Jinyan ; Zheng, Haoteng ; Bi, Zuyue ; Chen, Mengyang ; Mao, Rui ; Lu, Minhua</creator><creatorcontrib>Xiao, Chenhui ; Li, Zhenzhou ; Lu, Jianfeng ; Wang, Jinyan ; Zheng, Haoteng ; Bi, Zuyue ; Chen, Mengyang ; Mao, Rui ; Lu, Minhua</creatorcontrib><description>•A new architecture of motion tracking has been proposed.•Deep learning method for displacement tracking of the vessel wall from the ultrasound RF signals.•It improves the accuracy in vessel wall motion tracking in comparsion with traditional methods. It is necessary to monitor the mechanical properties of arteries which directly related to cardiovascular diseases (CVDs) in the early stages. In this study, we proposed a new method based on deep learning (DL) to track the displacement of the vessel wall from the ultrasound radio-frequency (RF) signals, which is a key technique to achieve quantitative measurement of vascular biomechanics. In comparison with traditional method, both results on simulation and experimental carotid artery data demonstrated that the DL method has higher accuracy for motion tracking of artery walls. Hence, the DL method can be widely applied so that can predict the early pathology of cardiovascular system.</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/j.compmedimag.2020.101819</identifier><identifier>PMID: 33341465</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Deep learning ; Displacement tracking ; Pulse wave imaging ; Single target block matching ; Vascular biomechanics</subject><ispartof>Computerized medical imaging and graphics, 2021-01, Vol.87, p.101819-101819, Article 101819</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-27aefdd2e0719f46b7464491f31c4f27d8fdee7440733a3a6ba506b2e3a28c6d3</citedby><cites>FETCH-LOGICAL-c377t-27aefdd2e0719f46b7464491f31c4f27d8fdee7440733a3a6ba506b2e3a28c6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0895611120301142$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33341465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Chenhui</creatorcontrib><creatorcontrib>Li, Zhenzhou</creatorcontrib><creatorcontrib>Lu, Jianfeng</creatorcontrib><creatorcontrib>Wang, Jinyan</creatorcontrib><creatorcontrib>Zheng, Haoteng</creatorcontrib><creatorcontrib>Bi, Zuyue</creatorcontrib><creatorcontrib>Chen, Mengyang</creatorcontrib><creatorcontrib>Mao, Rui</creatorcontrib><creatorcontrib>Lu, Minhua</creatorcontrib><title>A new deep learning method for displacement tracking from ultrasound RF signals of vascular walls</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>•A new architecture of motion tracking has been proposed.•Deep learning method for displacement tracking of the vessel wall from the ultrasound RF signals.•It improves the accuracy in vessel wall motion tracking in comparsion with traditional methods. It is necessary to monitor the mechanical properties of arteries which directly related to cardiovascular diseases (CVDs) in the early stages. In this study, we proposed a new method based on deep learning (DL) to track the displacement of the vessel wall from the ultrasound radio-frequency (RF) signals, which is a key technique to achieve quantitative measurement of vascular biomechanics. In comparison with traditional method, both results on simulation and experimental carotid artery data demonstrated that the DL method has higher accuracy for motion tracking of artery walls. Hence, the DL method can be widely applied so that can predict the early pathology of cardiovascular system.</description><subject>Deep learning</subject><subject>Displacement tracking</subject><subject>Pulse wave imaging</subject><subject>Single target block matching</subject><subject>Vascular biomechanics</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkMlu2zAQQIkiReMsvxCwt1zkcjMpHQ2jaQsEKBCkZ4Iih64cSlRJyUb-vnSdBjnmNODMm4UPoc-ULCmh8stuaWM_9uC63myXjLB_-Zo2H9CC1qqpiFL0DC1I3awqSSk9Rxc57wgppKKf0DnnXFAhVwtk1niAA3YAIw5g0tANW9zD9Ds67GPCrstjMBZ6GCY8JWOfjoBPscdzKO8c58Hhhzucu-1gQsbR473Jdg4m4YMJIV-hj74U4PolXqJfd18fN9-r-5_ffmzW95XlSk0VUwa8cwzKhY0XslVCCtFQz6kVnilX-3KkEoIozg03sjUrIlsG3LDaSscv0e1p7pjinxnypPsuWwjBDBDnrJlQdMUl46SgzQm1KeacwOsxFZXpWVOij4b1Tr8xrI-G9clw6b15WTO3pf7a-V9pATYnAMpn9x0knW0Hgy2zEthJu9i9Y81fmrOTaQ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Xiao, Chenhui</creator><creator>Li, Zhenzhou</creator><creator>Lu, Jianfeng</creator><creator>Wang, Jinyan</creator><creator>Zheng, Haoteng</creator><creator>Bi, Zuyue</creator><creator>Chen, Mengyang</creator><creator>Mao, Rui</creator><creator>Lu, Minhua</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202101</creationdate><title>A new deep learning method for displacement tracking from ultrasound RF signals of vascular walls</title><author>Xiao, Chenhui ; Li, Zhenzhou ; Lu, Jianfeng ; Wang, Jinyan ; Zheng, Haoteng ; Bi, Zuyue ; Chen, Mengyang ; Mao, Rui ; Lu, Minhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-27aefdd2e0719f46b7464491f31c4f27d8fdee7440733a3a6ba506b2e3a28c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep learning</topic><topic>Displacement tracking</topic><topic>Pulse wave imaging</topic><topic>Single target block matching</topic><topic>Vascular biomechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Chenhui</creatorcontrib><creatorcontrib>Li, Zhenzhou</creatorcontrib><creatorcontrib>Lu, Jianfeng</creatorcontrib><creatorcontrib>Wang, Jinyan</creatorcontrib><creatorcontrib>Zheng, Haoteng</creatorcontrib><creatorcontrib>Bi, Zuyue</creatorcontrib><creatorcontrib>Chen, Mengyang</creatorcontrib><creatorcontrib>Mao, Rui</creatorcontrib><creatorcontrib>Lu, Minhua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Chenhui</au><au>Li, Zhenzhou</au><au>Lu, Jianfeng</au><au>Wang, Jinyan</au><au>Zheng, Haoteng</au><au>Bi, Zuyue</au><au>Chen, Mengyang</au><au>Mao, Rui</au><au>Lu, Minhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new deep learning method for displacement tracking from ultrasound RF signals of vascular walls</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>2021-01</date><risdate>2021</risdate><volume>87</volume><spage>101819</spage><epage>101819</epage><pages>101819-101819</pages><artnum>101819</artnum><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>•A new architecture of motion tracking has been proposed.•Deep learning method for displacement tracking of the vessel wall from the ultrasound RF signals.•It improves the accuracy in vessel wall motion tracking in comparsion with traditional methods. It is necessary to monitor the mechanical properties of arteries which directly related to cardiovascular diseases (CVDs) in the early stages. In this study, we proposed a new method based on deep learning (DL) to track the displacement of the vessel wall from the ultrasound radio-frequency (RF) signals, which is a key technique to achieve quantitative measurement of vascular biomechanics. In comparison with traditional method, both results on simulation and experimental carotid artery data demonstrated that the DL method has higher accuracy for motion tracking of artery walls. Hence, the DL method can be widely applied so that can predict the early pathology of cardiovascular system.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>33341465</pmid><doi>10.1016/j.compmedimag.2020.101819</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-6111
ispartof Computerized medical imaging and graphics, 2021-01, Vol.87, p.101819-101819, Article 101819
issn 0895-6111
1879-0771
language eng
recordid cdi_proquest_miscellaneous_2471536230
source Elsevier ScienceDirect Journals
subjects Deep learning
Displacement tracking
Pulse wave imaging
Single target block matching
Vascular biomechanics
title A new deep learning method for displacement tracking from ultrasound RF signals of vascular walls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20deep%20learning%20method%20for%20displacement%20tracking%20from%20ultrasound%20RF%20signals%20of%20vascular%20walls&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Xiao,%20Chenhui&rft.date=2021-01&rft.volume=87&rft.spage=101819&rft.epage=101819&rft.pages=101819-101819&rft.artnum=101819&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/j.compmedimag.2020.101819&rft_dat=%3Cproquest_cross%3E2471536230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471536230&rft_id=info:pmid/33341465&rft_els_id=S0895611120301142&rfr_iscdi=true