Failing Forward: Stability of Transparent Electrodes Based on Metal Nanowire Networks
Metal nanowire (MNW)‐based transparent electrode technologies have significantly matured over the last decade to become a prominent low‐cost alternative to indium tin oxide (ITO). Beyond reaching the same level of performance as ITO, MNW networks offer additional advantages including flexibility and...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-02, Vol.33 (5), p.e2004356-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | e2004356 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Patil, Jatin J. Chae, Woo Hyun Trebach, Adam Carter, Ki‐Jana Lee, Eric Sannicolo, Thomas Grossman, Jeffrey C. |
description | Metal nanowire (MNW)‐based transparent electrode technologies have significantly matured over the last decade to become a prominent low‐cost alternative to indium tin oxide (ITO). Beyond reaching the same level of performance as ITO, MNW networks offer additional advantages including flexibility and low materials cost. To facilitate adoption of MNW networks as a replacement to ITO, they must overcome their inherent stability issues while maintaining their properties and cost‐effectiveness. Herein, the fundamental failure mechanisms of MNW networks are discussed in detail. Recent strategies to computationally model MNWs from the nano‐ to macroscale and suggest future work to capture dynamic failure to unravel mechanisms that account for convolution of the failure modes are highlighted. Strategies to characterize MNW network failure in situ and postmortem are also discussed. In addition, recent work about improving the stability of MNW networks via encapsulation is discussed. Lastly, a perspective is given on how to frame the requirements of MNW‐encapsulant hybrids with reference to their target applications, namely: solar cells, transparent film heaters, sensors, and displays. A cost analysis to comment on the feasibility of implementing MNW hybrids is provided, and critical areas to focus on for future work on MNW networks are suggested.
Metal nanowire (MNW)‐based transparent electrode technology is a promising low‐cost alternative to indium tin oxide, offering mechanical flexibility and low materials cost. The fundamental failure mechanisms of MNWs, strategies to computationally model MNW networks, characterization strategies, and encapsulation strategies are discussed. Lastly, a perspective on evaluating MNW‐based electrodes based on their technological relevance and cost is presented. |
doi_str_mv | 10.1002/adma.202004356 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2471533183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2484667825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-23dadea40352e58fad79184321781849a62dc3418ed9d4ae9b010885d09648c33</originalsourceid><addsrcrecordid>eNqFkE1PG0EMhkeoCFLgyrEaqZdeNng-M9NboAlFgnAgnFfOjoOWbnbSmY2i_PtuFKBSLz1Zsh4_tl_GLgUMBYC8wrDCoQQJoJWxR2wgjBSFBm8-sQF4ZQpvtTtln3N-BQBvwZ6wU6WUthpgwJ6nWDd1-8KnMW0xhe_8qcNF3-p2PC75PGGb15io7fikoapLMVDm15gp8NjyB-qw4TNs47ZOxGfUbWP6lc_Z8RKbTBdv9azfM5nf_CzuH2_vbsb3RaWVt4VUAQOhBmUkGbfEMPLCaSXFyPXVo5WhUlo4Cj5oJL8AAc6ZAPunKqXO2LeDd53i7w3lrlzVuaKmwZbiJpdSj4RRSrg9-vUf9DVuUttf11NOWzty0vTU8EBVKeacaFmuU73CtCsFlPvAy33g5Ufg_cCXN-1msaLwgb8n3AP-AGzrhnb_0ZXjHw_jv_I_dk-KrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2484667825</pqid></control><display><type>article</type><title>Failing Forward: Stability of Transparent Electrodes Based on Metal Nanowire Networks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Patil, Jatin J. ; Chae, Woo Hyun ; Trebach, Adam ; Carter, Ki‐Jana ; Lee, Eric ; Sannicolo, Thomas ; Grossman, Jeffrey C.</creator><creatorcontrib>Patil, Jatin J. ; Chae, Woo Hyun ; Trebach, Adam ; Carter, Ki‐Jana ; Lee, Eric ; Sannicolo, Thomas ; Grossman, Jeffrey C.</creatorcontrib><description>Metal nanowire (MNW)‐based transparent electrode technologies have significantly matured over the last decade to become a prominent low‐cost alternative to indium tin oxide (ITO). Beyond reaching the same level of performance as ITO, MNW networks offer additional advantages including flexibility and low materials cost. To facilitate adoption of MNW networks as a replacement to ITO, they must overcome their inherent stability issues while maintaining their properties and cost‐effectiveness. Herein, the fundamental failure mechanisms of MNW networks are discussed in detail. Recent strategies to computationally model MNWs from the nano‐ to macroscale and suggest future work to capture dynamic failure to unravel mechanisms that account for convolution of the failure modes are highlighted. Strategies to characterize MNW network failure in situ and postmortem are also discussed. In addition, recent work about improving the stability of MNW networks via encapsulation is discussed. Lastly, a perspective is given on how to frame the requirements of MNW‐encapsulant hybrids with reference to their target applications, namely: solar cells, transparent film heaters, sensors, and displays. A cost analysis to comment on the feasibility of implementing MNW hybrids is provided, and critical areas to focus on for future work on MNW networks are suggested.
Metal nanowire (MNW)‐based transparent electrode technology is a promising low‐cost alternative to indium tin oxide, offering mechanical flexibility and low materials cost. The fundamental failure mechanisms of MNWs, strategies to computationally model MNW networks, characterization strategies, and encapsulation strategies are discussed. Lastly, a perspective on evaluating MNW‐based electrodes based on their technological relevance and cost is presented.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202004356</identifier><identifier>PMID: 33346400</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Convolution ; Cost analysis ; Electrodes ; Encapsulation ; failure ; Failure mechanisms ; Failure modes ; Indium tin oxides ; metal nanowire networks ; Nanowires ; Networks ; Photovoltaic cells ; silver nanowires ; Solar cells ; Stability ; transparent conductive materials</subject><ispartof>Advanced materials (Weinheim), 2021-02, Vol.33 (5), p.e2004356-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2020 Wiley-VCH GmbH.</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-23dadea40352e58fad79184321781849a62dc3418ed9d4ae9b010885d09648c33</citedby><cites>FETCH-LOGICAL-c4396-23dadea40352e58fad79184321781849a62dc3418ed9d4ae9b010885d09648c33</cites><orcidid>0000-0003-2219-8380 ; 0000-0001-8385-9491 ; 0000-0001-9135-1540 ; 0000-0001-9099-9628 ; 0000-0003-1281-2359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202004356$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202004356$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33346400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patil, Jatin J.</creatorcontrib><creatorcontrib>Chae, Woo Hyun</creatorcontrib><creatorcontrib>Trebach, Adam</creatorcontrib><creatorcontrib>Carter, Ki‐Jana</creatorcontrib><creatorcontrib>Lee, Eric</creatorcontrib><creatorcontrib>Sannicolo, Thomas</creatorcontrib><creatorcontrib>Grossman, Jeffrey C.</creatorcontrib><title>Failing Forward: Stability of Transparent Electrodes Based on Metal Nanowire Networks</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Metal nanowire (MNW)‐based transparent electrode technologies have significantly matured over the last decade to become a prominent low‐cost alternative to indium tin oxide (ITO). Beyond reaching the same level of performance as ITO, MNW networks offer additional advantages including flexibility and low materials cost. To facilitate adoption of MNW networks as a replacement to ITO, they must overcome their inherent stability issues while maintaining their properties and cost‐effectiveness. Herein, the fundamental failure mechanisms of MNW networks are discussed in detail. Recent strategies to computationally model MNWs from the nano‐ to macroscale and suggest future work to capture dynamic failure to unravel mechanisms that account for convolution of the failure modes are highlighted. Strategies to characterize MNW network failure in situ and postmortem are also discussed. In addition, recent work about improving the stability of MNW networks via encapsulation is discussed. Lastly, a perspective is given on how to frame the requirements of MNW‐encapsulant hybrids with reference to their target applications, namely: solar cells, transparent film heaters, sensors, and displays. A cost analysis to comment on the feasibility of implementing MNW hybrids is provided, and critical areas to focus on for future work on MNW networks are suggested.
Metal nanowire (MNW)‐based transparent electrode technology is a promising low‐cost alternative to indium tin oxide, offering mechanical flexibility and low materials cost. The fundamental failure mechanisms of MNWs, strategies to computationally model MNW networks, characterization strategies, and encapsulation strategies are discussed. Lastly, a perspective on evaluating MNW‐based electrodes based on their technological relevance and cost is presented.</description><subject>Convolution</subject><subject>Cost analysis</subject><subject>Electrodes</subject><subject>Encapsulation</subject><subject>failure</subject><subject>Failure mechanisms</subject><subject>Failure modes</subject><subject>Indium tin oxides</subject><subject>metal nanowire networks</subject><subject>Nanowires</subject><subject>Networks</subject><subject>Photovoltaic cells</subject><subject>silver nanowires</subject><subject>Solar cells</subject><subject>Stability</subject><subject>transparent conductive materials</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PG0EMhkeoCFLgyrEaqZdeNng-M9NboAlFgnAgnFfOjoOWbnbSmY2i_PtuFKBSLz1Zsh4_tl_GLgUMBYC8wrDCoQQJoJWxR2wgjBSFBm8-sQF4ZQpvtTtln3N-BQBvwZ6wU6WUthpgwJ6nWDd1-8KnMW0xhe_8qcNF3-p2PC75PGGb15io7fikoapLMVDm15gp8NjyB-qw4TNs47ZOxGfUbWP6lc_Z8RKbTBdv9azfM5nf_CzuH2_vbsb3RaWVt4VUAQOhBmUkGbfEMPLCaSXFyPXVo5WhUlo4Cj5oJL8AAc6ZAPunKqXO2LeDd53i7w3lrlzVuaKmwZbiJpdSj4RRSrg9-vUf9DVuUttf11NOWzty0vTU8EBVKeacaFmuU73CtCsFlPvAy33g5Ufg_cCXN-1msaLwgb8n3AP-AGzrhnb_0ZXjHw_jv_I_dk-KrA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Patil, Jatin J.</creator><creator>Chae, Woo Hyun</creator><creator>Trebach, Adam</creator><creator>Carter, Ki‐Jana</creator><creator>Lee, Eric</creator><creator>Sannicolo, Thomas</creator><creator>Grossman, Jeffrey C.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2219-8380</orcidid><orcidid>https://orcid.org/0000-0001-8385-9491</orcidid><orcidid>https://orcid.org/0000-0001-9135-1540</orcidid><orcidid>https://orcid.org/0000-0001-9099-9628</orcidid><orcidid>https://orcid.org/0000-0003-1281-2359</orcidid></search><sort><creationdate>20210201</creationdate><title>Failing Forward: Stability of Transparent Electrodes Based on Metal Nanowire Networks</title><author>Patil, Jatin J. ; Chae, Woo Hyun ; Trebach, Adam ; Carter, Ki‐Jana ; Lee, Eric ; Sannicolo, Thomas ; Grossman, Jeffrey C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-23dadea40352e58fad79184321781849a62dc3418ed9d4ae9b010885d09648c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convolution</topic><topic>Cost analysis</topic><topic>Electrodes</topic><topic>Encapsulation</topic><topic>failure</topic><topic>Failure mechanisms</topic><topic>Failure modes</topic><topic>Indium tin oxides</topic><topic>metal nanowire networks</topic><topic>Nanowires</topic><topic>Networks</topic><topic>Photovoltaic cells</topic><topic>silver nanowires</topic><topic>Solar cells</topic><topic>Stability</topic><topic>transparent conductive materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patil, Jatin J.</creatorcontrib><creatorcontrib>Chae, Woo Hyun</creatorcontrib><creatorcontrib>Trebach, Adam</creatorcontrib><creatorcontrib>Carter, Ki‐Jana</creatorcontrib><creatorcontrib>Lee, Eric</creatorcontrib><creatorcontrib>Sannicolo, Thomas</creatorcontrib><creatorcontrib>Grossman, Jeffrey C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patil, Jatin J.</au><au>Chae, Woo Hyun</au><au>Trebach, Adam</au><au>Carter, Ki‐Jana</au><au>Lee, Eric</au><au>Sannicolo, Thomas</au><au>Grossman, Jeffrey C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failing Forward: Stability of Transparent Electrodes Based on Metal Nanowire Networks</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>33</volume><issue>5</issue><spage>e2004356</spage><epage>n/a</epage><pages>e2004356-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Metal nanowire (MNW)‐based transparent electrode technologies have significantly matured over the last decade to become a prominent low‐cost alternative to indium tin oxide (ITO). Beyond reaching the same level of performance as ITO, MNW networks offer additional advantages including flexibility and low materials cost. To facilitate adoption of MNW networks as a replacement to ITO, they must overcome their inherent stability issues while maintaining their properties and cost‐effectiveness. Herein, the fundamental failure mechanisms of MNW networks are discussed in detail. Recent strategies to computationally model MNWs from the nano‐ to macroscale and suggest future work to capture dynamic failure to unravel mechanisms that account for convolution of the failure modes are highlighted. Strategies to characterize MNW network failure in situ and postmortem are also discussed. In addition, recent work about improving the stability of MNW networks via encapsulation is discussed. Lastly, a perspective is given on how to frame the requirements of MNW‐encapsulant hybrids with reference to their target applications, namely: solar cells, transparent film heaters, sensors, and displays. A cost analysis to comment on the feasibility of implementing MNW hybrids is provided, and critical areas to focus on for future work on MNW networks are suggested.
Metal nanowire (MNW)‐based transparent electrode technology is a promising low‐cost alternative to indium tin oxide, offering mechanical flexibility and low materials cost. The fundamental failure mechanisms of MNWs, strategies to computationally model MNW networks, characterization strategies, and encapsulation strategies are discussed. Lastly, a perspective on evaluating MNW‐based electrodes based on their technological relevance and cost is presented.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33346400</pmid><doi>10.1002/adma.202004356</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-2219-8380</orcidid><orcidid>https://orcid.org/0000-0001-8385-9491</orcidid><orcidid>https://orcid.org/0000-0001-9135-1540</orcidid><orcidid>https://orcid.org/0000-0001-9099-9628</orcidid><orcidid>https://orcid.org/0000-0003-1281-2359</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-02, Vol.33 (5), p.e2004356-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2471533183 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Convolution Cost analysis Electrodes Encapsulation failure Failure mechanisms Failure modes Indium tin oxides metal nanowire networks Nanowires Networks Photovoltaic cells silver nanowires Solar cells Stability transparent conductive materials |
title | Failing Forward: Stability of Transparent Electrodes Based on Metal Nanowire Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failing%20Forward:%20Stability%20of%20Transparent%20Electrodes%20Based%20on%20Metal%20Nanowire%20Networks&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Patil,%20Jatin%20J.&rft.date=2021-02-01&rft.volume=33&rft.issue=5&rft.spage=e2004356&rft.epage=n/a&rft.pages=e2004356-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202004356&rft_dat=%3Cproquest_cross%3E2484667825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2484667825&rft_id=info:pmid/33346400&rfr_iscdi=true |