Natural Biomineralization-Inspired Magnesium Silicate Composite Coating Upregulates Osteogenesis, Enabling Strong Anterior Cruciate Ligament Graft-Bone Healing In Vivo

Artificial ligaments prepared from polyethylene terephthalate (PET) are widely accepted for clinical anterior cruciate ligament (ACL) reconstruction to recover the native function of knee joints. However, due to the chemical inertness and hydrophobicity of PET, improving its bioactivity and promotin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS biomaterials science & engineering 2021-01, Vol.7 (1), p.133-143
Hauptverfasser: Shi, Song, Fan, Wentao, Tao, Ran, Xu, Hua, Lu, Yue, Han, Fei, Yang, Shuaijie, Zhou, Xinyu, Zhou, Zhenyu, Wan, Fuyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 1
container_start_page 133
container_title ACS biomaterials science & engineering
container_volume 7
creator Shi, Song
Fan, Wentao
Tao, Ran
Xu, Hua
Lu, Yue
Han, Fei
Yang, Shuaijie
Zhou, Xinyu
Zhou, Zhenyu
Wan, Fuyin
description Artificial ligaments prepared from polyethylene terephthalate (PET) are widely accepted for clinical anterior cruciate ligament (ACL) reconstruction to recover the native function of knee joints. However, due to the chemical inertness and hydrophobicity of PET, improving its bioactivity and promoting graft-bone integration are still great challenges. Inspired by the natural biomineralization process on the surface of a historical stone, in this study, a bioactive organic/inorganic composite coating that is composed of poly(allylamine hydrochloride) and chondroitin sulfate with magnesium silicate (MgSiO ) doping is developed for surface modification of PET (MSPC-PET). This composite coating promotes adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) and its bioactive inorganic components (MgSiO ) could induce osteogenic differentiation of BMSCs. Furthermore, an in vivo experiment indicated that this composite coating might afford superior graft-bone integration between MSPC-PET and the host bone tunnel, and fibrous scar tissue formation was also inhibited. More importantly, a biomechanical analysis proved that there was a strong integration between the MSPC-PET graft and the bone tunnel, which will improve biomechanical properties for the restoration of ACL function. This study shows that this bioactive composite coating-modified PET graft for the ACL reconstruction can effectively achieve good integration of ACL artificial grafts and bone tunnels and prevent surgical failure.
doi_str_mv 10.1021/acsbiomaterials.0c01441
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2471466937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471466937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-d1eff43f747d3c0507045c144000dfd7288109495999d9c0bf3f45ed6721916e3</originalsourceid><addsrcrecordid>eNpdUc1O3DAYtCqqgra8QusjBwJ27MTxEVYUVtqWA6XXyOt8jlwldmo7SPSFeE0cWFBVX76RPDPfzyD0lZIzSkp6rnTcWT-qBMGqIZ4RTSjn9AM6KplghWxEc_APPkTHMf4mhFDWVJzzT-iQ5VfKWh6hpx8qzUEN-DI7WgcZ2r8qWe-KjYuTDdDh76p3EO084js7WJ374rUfJx_tC8ps1-P7KUA_D_kz4tuYwPewiOIpvnJqNyyUuxR8LhduGdwHvA6ztovb1vZqBJfwdVAmFZfeAb4B9SLaOPzLPvjP6KPJu8Lxvq7Q_bern-ubYnt7vVlfbAvNKEtFR8EYzozgomOaVEQQXul8nbx-ZzpRNg0lkstKStlJTXaGGV5BV4uSSloDW6GTV98p-D8zxNSONmoYBuXAz7EtuaC8rmU-7gqJV6oOPsYApp2CHVV4bClpl6Da_4Jq90Fl5Zd9k3k3Qveue4uFPQNxsJcC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471466937</pqid></control><display><type>article</type><title>Natural Biomineralization-Inspired Magnesium Silicate Composite Coating Upregulates Osteogenesis, Enabling Strong Anterior Cruciate Ligament Graft-Bone Healing In Vivo</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Shi, Song ; Fan, Wentao ; Tao, Ran ; Xu, Hua ; Lu, Yue ; Han, Fei ; Yang, Shuaijie ; Zhou, Xinyu ; Zhou, Zhenyu ; Wan, Fuyin</creator><creatorcontrib>Shi, Song ; Fan, Wentao ; Tao, Ran ; Xu, Hua ; Lu, Yue ; Han, Fei ; Yang, Shuaijie ; Zhou, Xinyu ; Zhou, Zhenyu ; Wan, Fuyin</creatorcontrib><description>Artificial ligaments prepared from polyethylene terephthalate (PET) are widely accepted for clinical anterior cruciate ligament (ACL) reconstruction to recover the native function of knee joints. However, due to the chemical inertness and hydrophobicity of PET, improving its bioactivity and promoting graft-bone integration are still great challenges. Inspired by the natural biomineralization process on the surface of a historical stone, in this study, a bioactive organic/inorganic composite coating that is composed of poly(allylamine hydrochloride) and chondroitin sulfate with magnesium silicate (MgSiO ) doping is developed for surface modification of PET (MSPC-PET). This composite coating promotes adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) and its bioactive inorganic components (MgSiO ) could induce osteogenic differentiation of BMSCs. Furthermore, an in vivo experiment indicated that this composite coating might afford superior graft-bone integration between MSPC-PET and the host bone tunnel, and fibrous scar tissue formation was also inhibited. More importantly, a biomechanical analysis proved that there was a strong integration between the MSPC-PET graft and the bone tunnel, which will improve biomechanical properties for the restoration of ACL function. This study shows that this bioactive composite coating-modified PET graft for the ACL reconstruction can effectively achieve good integration of ACL artificial grafts and bone tunnels and prevent surgical failure.</description><identifier>ISSN: 2373-9878</identifier><identifier>EISSN: 2373-9878</identifier><identifier>DOI: 10.1021/acsbiomaterials.0c01441</identifier><identifier>PMID: 33332969</identifier><language>eng</language><publisher>United States</publisher><subject>Anterior Cruciate Ligament - surgery ; Biomineralization ; Magnesium ; Magnesium Silicates ; Osteogenesis</subject><ispartof>ACS biomaterials science &amp; engineering, 2021-01, Vol.7 (1), p.133-143</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-d1eff43f747d3c0507045c144000dfd7288109495999d9c0bf3f45ed6721916e3</citedby><cites>FETCH-LOGICAL-c313t-d1eff43f747d3c0507045c144000dfd7288109495999d9c0bf3f45ed6721916e3</cites><orcidid>0000-0002-9373-1827</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33332969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Song</creatorcontrib><creatorcontrib>Fan, Wentao</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Lu, Yue</creatorcontrib><creatorcontrib>Han, Fei</creatorcontrib><creatorcontrib>Yang, Shuaijie</creatorcontrib><creatorcontrib>Zhou, Xinyu</creatorcontrib><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Wan, Fuyin</creatorcontrib><title>Natural Biomineralization-Inspired Magnesium Silicate Composite Coating Upregulates Osteogenesis, Enabling Strong Anterior Cruciate Ligament Graft-Bone Healing In Vivo</title><title>ACS biomaterials science &amp; engineering</title><addtitle>ACS Biomater Sci Eng</addtitle><description>Artificial ligaments prepared from polyethylene terephthalate (PET) are widely accepted for clinical anterior cruciate ligament (ACL) reconstruction to recover the native function of knee joints. However, due to the chemical inertness and hydrophobicity of PET, improving its bioactivity and promoting graft-bone integration are still great challenges. Inspired by the natural biomineralization process on the surface of a historical stone, in this study, a bioactive organic/inorganic composite coating that is composed of poly(allylamine hydrochloride) and chondroitin sulfate with magnesium silicate (MgSiO ) doping is developed for surface modification of PET (MSPC-PET). This composite coating promotes adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) and its bioactive inorganic components (MgSiO ) could induce osteogenic differentiation of BMSCs. Furthermore, an in vivo experiment indicated that this composite coating might afford superior graft-bone integration between MSPC-PET and the host bone tunnel, and fibrous scar tissue formation was also inhibited. More importantly, a biomechanical analysis proved that there was a strong integration between the MSPC-PET graft and the bone tunnel, which will improve biomechanical properties for the restoration of ACL function. This study shows that this bioactive composite coating-modified PET graft for the ACL reconstruction can effectively achieve good integration of ACL artificial grafts and bone tunnels and prevent surgical failure.</description><subject>Anterior Cruciate Ligament - surgery</subject><subject>Biomineralization</subject><subject>Magnesium</subject><subject>Magnesium Silicates</subject><subject>Osteogenesis</subject><issn>2373-9878</issn><issn>2373-9878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUc1O3DAYtCqqgra8QusjBwJ27MTxEVYUVtqWA6XXyOt8jlwldmo7SPSFeE0cWFBVX76RPDPfzyD0lZIzSkp6rnTcWT-qBMGqIZ4RTSjn9AM6KplghWxEc_APPkTHMf4mhFDWVJzzT-iQ5VfKWh6hpx8qzUEN-DI7WgcZ2r8qWe-KjYuTDdDh76p3EO084js7WJ374rUfJx_tC8ps1-P7KUA_D_kz4tuYwPewiOIpvnJqNyyUuxR8LhduGdwHvA6ztovb1vZqBJfwdVAmFZfeAb4B9SLaOPzLPvjP6KPJu8Lxvq7Q_bern-ubYnt7vVlfbAvNKEtFR8EYzozgomOaVEQQXul8nbx-ZzpRNg0lkstKStlJTXaGGV5BV4uSSloDW6GTV98p-D8zxNSONmoYBuXAz7EtuaC8rmU-7gqJV6oOPsYApp2CHVV4bClpl6Da_4Jq90Fl5Zd9k3k3Qveue4uFPQNxsJcC</recordid><startdate>20210111</startdate><enddate>20210111</enddate><creator>Shi, Song</creator><creator>Fan, Wentao</creator><creator>Tao, Ran</creator><creator>Xu, Hua</creator><creator>Lu, Yue</creator><creator>Han, Fei</creator><creator>Yang, Shuaijie</creator><creator>Zhou, Xinyu</creator><creator>Zhou, Zhenyu</creator><creator>Wan, Fuyin</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9373-1827</orcidid></search><sort><creationdate>20210111</creationdate><title>Natural Biomineralization-Inspired Magnesium Silicate Composite Coating Upregulates Osteogenesis, Enabling Strong Anterior Cruciate Ligament Graft-Bone Healing In Vivo</title><author>Shi, Song ; Fan, Wentao ; Tao, Ran ; Xu, Hua ; Lu, Yue ; Han, Fei ; Yang, Shuaijie ; Zhou, Xinyu ; Zhou, Zhenyu ; Wan, Fuyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-d1eff43f747d3c0507045c144000dfd7288109495999d9c0bf3f45ed6721916e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anterior Cruciate Ligament - surgery</topic><topic>Biomineralization</topic><topic>Magnesium</topic><topic>Magnesium Silicates</topic><topic>Osteogenesis</topic><toplevel>online_resources</toplevel><creatorcontrib>Shi, Song</creatorcontrib><creatorcontrib>Fan, Wentao</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>Xu, Hua</creatorcontrib><creatorcontrib>Lu, Yue</creatorcontrib><creatorcontrib>Han, Fei</creatorcontrib><creatorcontrib>Yang, Shuaijie</creatorcontrib><creatorcontrib>Zhou, Xinyu</creatorcontrib><creatorcontrib>Zhou, Zhenyu</creatorcontrib><creatorcontrib>Wan, Fuyin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS biomaterials science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Song</au><au>Fan, Wentao</au><au>Tao, Ran</au><au>Xu, Hua</au><au>Lu, Yue</au><au>Han, Fei</au><au>Yang, Shuaijie</au><au>Zhou, Xinyu</au><au>Zhou, Zhenyu</au><au>Wan, Fuyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural Biomineralization-Inspired Magnesium Silicate Composite Coating Upregulates Osteogenesis, Enabling Strong Anterior Cruciate Ligament Graft-Bone Healing In Vivo</atitle><jtitle>ACS biomaterials science &amp; engineering</jtitle><addtitle>ACS Biomater Sci Eng</addtitle><date>2021-01-11</date><risdate>2021</risdate><volume>7</volume><issue>1</issue><spage>133</spage><epage>143</epage><pages>133-143</pages><issn>2373-9878</issn><eissn>2373-9878</eissn><abstract>Artificial ligaments prepared from polyethylene terephthalate (PET) are widely accepted for clinical anterior cruciate ligament (ACL) reconstruction to recover the native function of knee joints. However, due to the chemical inertness and hydrophobicity of PET, improving its bioactivity and promoting graft-bone integration are still great challenges. Inspired by the natural biomineralization process on the surface of a historical stone, in this study, a bioactive organic/inorganic composite coating that is composed of poly(allylamine hydrochloride) and chondroitin sulfate with magnesium silicate (MgSiO ) doping is developed for surface modification of PET (MSPC-PET). This composite coating promotes adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) and its bioactive inorganic components (MgSiO ) could induce osteogenic differentiation of BMSCs. Furthermore, an in vivo experiment indicated that this composite coating might afford superior graft-bone integration between MSPC-PET and the host bone tunnel, and fibrous scar tissue formation was also inhibited. More importantly, a biomechanical analysis proved that there was a strong integration between the MSPC-PET graft and the bone tunnel, which will improve biomechanical properties for the restoration of ACL function. This study shows that this bioactive composite coating-modified PET graft for the ACL reconstruction can effectively achieve good integration of ACL artificial grafts and bone tunnels and prevent surgical failure.</abstract><cop>United States</cop><pmid>33332969</pmid><doi>10.1021/acsbiomaterials.0c01441</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9373-1827</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2373-9878
ispartof ACS biomaterials science & engineering, 2021-01, Vol.7 (1), p.133-143
issn 2373-9878
2373-9878
language eng
recordid cdi_proquest_miscellaneous_2471466937
source MEDLINE; American Chemical Society Journals
subjects Anterior Cruciate Ligament - surgery
Biomineralization
Magnesium
Magnesium Silicates
Osteogenesis
title Natural Biomineralization-Inspired Magnesium Silicate Composite Coating Upregulates Osteogenesis, Enabling Strong Anterior Cruciate Ligament Graft-Bone Healing In Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A47%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20Biomineralization-Inspired%20Magnesium%20Silicate%20Composite%20Coating%20Upregulates%20Osteogenesis,%20Enabling%20Strong%20Anterior%20Cruciate%20Ligament%20Graft-Bone%20Healing%20In%20Vivo&rft.jtitle=ACS%20biomaterials%20science%20&%20engineering&rft.au=Shi,%20Song&rft.date=2021-01-11&rft.volume=7&rft.issue=1&rft.spage=133&rft.epage=143&rft.pages=133-143&rft.issn=2373-9878&rft.eissn=2373-9878&rft_id=info:doi/10.1021/acsbiomaterials.0c01441&rft_dat=%3Cproquest_cross%3E2471466937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471466937&rft_id=info:pmid/33332969&rfr_iscdi=true