Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes

Single atom impurities in graphene, substitutional silicon defects in particular, have been observed to diffuse under electron beam irradiation. However, the relative importance of elastic and inelastic scattering in facilitating their mobility remains unclear. Here, we employ excited-state electron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-01, Vol.21 (1), p.236-242
Hauptverfasser: Lingerfelt, David B, Yu, Tao, Yoshimura, Anthony, Ganesh, Panchapakesan, Jakowski, Jacek, Sumpter, Bobby G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 242
container_issue 1
container_start_page 236
container_title Nano letters
container_volume 21
creator Lingerfelt, David B
Yu, Tao
Yoshimura, Anthony
Ganesh, Panchapakesan
Jakowski, Jacek
Sumpter, Bobby G
description Single atom impurities in graphene, substitutional silicon defects in particular, have been observed to diffuse under electron beam irradiation. However, the relative importance of elastic and inelastic scattering in facilitating their mobility remains unclear. Here, we employ excited-state electronic structure calculations to explore potential inelastic effects, and find an electronically nonadiabatic excited-state silicon diffusion pathway involving "softened" Si-C bonding that presents an ∼2 eV lower diffusion barrier than the ground-state pathway. Beam-induced transition rates to this state indicate that the excited-state pathway is accessible through irradiation of the defect site. However, even in the limit of fully elastic scattering, upward nonadiabatic transitions are also possible along the diffusion coordinate, increasing the diffusion barrier and further demonstrating the potential for electronic nonadiabaticity to influence beam-induced atomic transformations in materials. We also propose some experimentally testable signatures of such excited-state pathways.
doi_str_mv 10.1021/acs.nanolett.0c03587
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2471458055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471458055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-1e35575169c4e9952621e02150ff1ab57b69e3e029a19aba0502d49808c20bef3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEYjD4Bwj1yKXDaZq2OaJtDKRpHIBzlKYOBHVJadoD_55M-_DFluXXr_0QckdhRiGjj0qHmVPOtzgMM9DAeFWekSvKGaSFENn5qa7yCbkO4QcABONwSSYsRllVxRVZbbxTjVW1GqxOlsagHkLiXbLAXZksrDFjsLFhXfJuW6u9Sxe-wybZRPOvXnXf6DDckAuj2oC3hzwln8_Lj_lLun5bvc6f1qnOqRhSiozzktNC6ByF4FmRUYzfcDCGqpqXdSGQxY5QVMSjgEPW5KKCSmdQo2FT8rDf2_X-d8QwyK0NGttWOfRjkFle0pxXwHkczfejuvch9Ghk19ut6v8kBblDKCNCeUQoDwij7P7gMNZbbE6iIzP2D5xcb28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471458055</pqid></control><display><type>article</type><title>Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes</title><source>ACS Publications</source><creator>Lingerfelt, David B ; Yu, Tao ; Yoshimura, Anthony ; Ganesh, Panchapakesan ; Jakowski, Jacek ; Sumpter, Bobby G</creator><creatorcontrib>Lingerfelt, David B ; Yu, Tao ; Yoshimura, Anthony ; Ganesh, Panchapakesan ; Jakowski, Jacek ; Sumpter, Bobby G</creatorcontrib><description>Single atom impurities in graphene, substitutional silicon defects in particular, have been observed to diffuse under electron beam irradiation. However, the relative importance of elastic and inelastic scattering in facilitating their mobility remains unclear. Here, we employ excited-state electronic structure calculations to explore potential inelastic effects, and find an electronically nonadiabatic excited-state silicon diffusion pathway involving "softened" Si-C bonding that presents an ∼2 eV lower diffusion barrier than the ground-state pathway. Beam-induced transition rates to this state indicate that the excited-state pathway is accessible through irradiation of the defect site. However, even in the limit of fully elastic scattering, upward nonadiabatic transitions are also possible along the diffusion coordinate, increasing the diffusion barrier and further demonstrating the potential for electronic nonadiabaticity to influence beam-induced atomic transformations in materials. We also propose some experimentally testable signatures of such excited-state pathways.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c03587</identifier><identifier>PMID: 33337886</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nano letters, 2021-01, Vol.21 (1), p.236-242</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-1e35575169c4e9952621e02150ff1ab57b69e3e029a19aba0502d49808c20bef3</citedby><cites>FETCH-LOGICAL-c419t-1e35575169c4e9952621e02150ff1ab57b69e3e029a19aba0502d49808c20bef3</cites><orcidid>0000-0001-6341-0355 ; 0000-0003-4906-3574 ; 0000-0002-7170-2902 ; 0000-0002-0738-425X ; 0000-0002-5630-0534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2763,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33337886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lingerfelt, David B</creatorcontrib><creatorcontrib>Yu, Tao</creatorcontrib><creatorcontrib>Yoshimura, Anthony</creatorcontrib><creatorcontrib>Ganesh, Panchapakesan</creatorcontrib><creatorcontrib>Jakowski, Jacek</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><title>Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Single atom impurities in graphene, substitutional silicon defects in particular, have been observed to diffuse under electron beam irradiation. However, the relative importance of elastic and inelastic scattering in facilitating their mobility remains unclear. Here, we employ excited-state electronic structure calculations to explore potential inelastic effects, and find an electronically nonadiabatic excited-state silicon diffusion pathway involving "softened" Si-C bonding that presents an ∼2 eV lower diffusion barrier than the ground-state pathway. Beam-induced transition rates to this state indicate that the excited-state pathway is accessible through irradiation of the defect site. However, even in the limit of fully elastic scattering, upward nonadiabatic transitions are also possible along the diffusion coordinate, increasing the diffusion barrier and further demonstrating the potential for electronic nonadiabaticity to influence beam-induced atomic transformations in materials. We also propose some experimentally testable signatures of such excited-state pathways.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEYjD4Bwj1yKXDaZq2OaJtDKRpHIBzlKYOBHVJadoD_55M-_DFluXXr_0QckdhRiGjj0qHmVPOtzgMM9DAeFWekSvKGaSFENn5qa7yCbkO4QcABONwSSYsRllVxRVZbbxTjVW1GqxOlsagHkLiXbLAXZksrDFjsLFhXfJuW6u9Sxe-wybZRPOvXnXf6DDckAuj2oC3hzwln8_Lj_lLun5bvc6f1qnOqRhSiozzktNC6ByF4FmRUYzfcDCGqpqXdSGQxY5QVMSjgEPW5KKCSmdQo2FT8rDf2_X-d8QwyK0NGttWOfRjkFle0pxXwHkczfejuvch9Ghk19ut6v8kBblDKCNCeUQoDwij7P7gMNZbbE6iIzP2D5xcb28</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Lingerfelt, David B</creator><creator>Yu, Tao</creator><creator>Yoshimura, Anthony</creator><creator>Ganesh, Panchapakesan</creator><creator>Jakowski, Jacek</creator><creator>Sumpter, Bobby G</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6341-0355</orcidid><orcidid>https://orcid.org/0000-0003-4906-3574</orcidid><orcidid>https://orcid.org/0000-0002-7170-2902</orcidid><orcidid>https://orcid.org/0000-0002-0738-425X</orcidid><orcidid>https://orcid.org/0000-0002-5630-0534</orcidid></search><sort><creationdate>20210113</creationdate><title>Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes</title><author>Lingerfelt, David B ; Yu, Tao ; Yoshimura, Anthony ; Ganesh, Panchapakesan ; Jakowski, Jacek ; Sumpter, Bobby G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-1e35575169c4e9952621e02150ff1ab57b69e3e029a19aba0502d49808c20bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lingerfelt, David B</creatorcontrib><creatorcontrib>Yu, Tao</creatorcontrib><creatorcontrib>Yoshimura, Anthony</creatorcontrib><creatorcontrib>Ganesh, Panchapakesan</creatorcontrib><creatorcontrib>Jakowski, Jacek</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lingerfelt, David B</au><au>Yu, Tao</au><au>Yoshimura, Anthony</au><au>Ganesh, Panchapakesan</au><au>Jakowski, Jacek</au><au>Sumpter, Bobby G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2021-01-13</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>236</spage><epage>242</epage><pages>236-242</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Single atom impurities in graphene, substitutional silicon defects in particular, have been observed to diffuse under electron beam irradiation. However, the relative importance of elastic and inelastic scattering in facilitating their mobility remains unclear. Here, we employ excited-state electronic structure calculations to explore potential inelastic effects, and find an electronically nonadiabatic excited-state silicon diffusion pathway involving "softened" Si-C bonding that presents an ∼2 eV lower diffusion barrier than the ground-state pathway. Beam-induced transition rates to this state indicate that the excited-state pathway is accessible through irradiation of the defect site. However, even in the limit of fully elastic scattering, upward nonadiabatic transitions are also possible along the diffusion coordinate, increasing the diffusion barrier and further demonstrating the potential for electronic nonadiabaticity to influence beam-induced atomic transformations in materials. We also propose some experimentally testable signatures of such excited-state pathways.</abstract><cop>United States</cop><pmid>33337886</pmid><doi>10.1021/acs.nanolett.0c03587</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6341-0355</orcidid><orcidid>https://orcid.org/0000-0003-4906-3574</orcidid><orcidid>https://orcid.org/0000-0002-7170-2902</orcidid><orcidid>https://orcid.org/0000-0002-0738-425X</orcidid><orcidid>https://orcid.org/0000-0002-5630-0534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2021-01, Vol.21 (1), p.236-242
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2471458055
source ACS Publications
title Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonadiabatic%20Effects%20on%20Defect%20Diffusion%20in%20Silicon-Doped%20Nanographenes&rft.jtitle=Nano%20letters&rft.au=Lingerfelt,%20David%20B&rft.date=2021-01-13&rft.volume=21&rft.issue=1&rft.spage=236&rft.epage=242&rft.pages=236-242&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c03587&rft_dat=%3Cproquest_cross%3E2471458055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471458055&rft_id=info:pmid/33337886&rfr_iscdi=true