Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes
Single atom impurities in graphene, substitutional silicon defects in particular, have been observed to diffuse under electron beam irradiation. However, the relative importance of elastic and inelastic scattering in facilitating their mobility remains unclear. Here, we employ excited-state electron...
Gespeichert in:
Veröffentlicht in: | Nano letters 2021-01, Vol.21 (1), p.236-242 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 242 |
---|---|
container_issue | 1 |
container_start_page | 236 |
container_title | Nano letters |
container_volume | 21 |
creator | Lingerfelt, David B Yu, Tao Yoshimura, Anthony Ganesh, Panchapakesan Jakowski, Jacek Sumpter, Bobby G |
description | Single atom impurities in graphene, substitutional silicon defects in particular, have been observed to diffuse under electron beam irradiation. However, the relative importance of elastic and inelastic scattering in facilitating their mobility remains unclear. Here, we employ excited-state electronic structure calculations to explore potential inelastic effects, and find an electronically nonadiabatic excited-state silicon diffusion pathway involving "softened" Si-C bonding that presents an ∼2 eV lower diffusion barrier than the ground-state pathway. Beam-induced transition rates to this state indicate that the excited-state pathway is accessible through irradiation of the defect site. However, even in the limit of fully elastic scattering, upward nonadiabatic transitions are also possible along the diffusion coordinate, increasing the diffusion barrier and further demonstrating the potential for electronic nonadiabaticity to influence beam-induced atomic transformations in materials. We also propose some experimentally testable signatures of such excited-state pathways. |
doi_str_mv | 10.1021/acs.nanolett.0c03587 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2471458055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471458055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-1e35575169c4e9952621e02150ff1ab57b69e3e029a19aba0502d49808c20bef3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEYjD4Bwj1yKXDaZq2OaJtDKRpHIBzlKYOBHVJadoD_55M-_DFluXXr_0QckdhRiGjj0qHmVPOtzgMM9DAeFWekSvKGaSFENn5qa7yCbkO4QcABONwSSYsRllVxRVZbbxTjVW1GqxOlsagHkLiXbLAXZksrDFjsLFhXfJuW6u9Sxe-wybZRPOvXnXf6DDckAuj2oC3hzwln8_Lj_lLun5bvc6f1qnOqRhSiozzktNC6ByF4FmRUYzfcDCGqpqXdSGQxY5QVMSjgEPW5KKCSmdQo2FT8rDf2_X-d8QwyK0NGttWOfRjkFle0pxXwHkczfejuvch9Ghk19ut6v8kBblDKCNCeUQoDwij7P7gMNZbbE6iIzP2D5xcb28</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471458055</pqid></control><display><type>article</type><title>Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes</title><source>ACS Publications</source><creator>Lingerfelt, David B ; Yu, Tao ; Yoshimura, Anthony ; Ganesh, Panchapakesan ; Jakowski, Jacek ; Sumpter, Bobby G</creator><creatorcontrib>Lingerfelt, David B ; Yu, Tao ; Yoshimura, Anthony ; Ganesh, Panchapakesan ; Jakowski, Jacek ; Sumpter, Bobby G</creatorcontrib><description>Single atom impurities in graphene, substitutional silicon defects in particular, have been observed to diffuse under electron beam irradiation. However, the relative importance of elastic and inelastic scattering in facilitating their mobility remains unclear. Here, we employ excited-state electronic structure calculations to explore potential inelastic effects, and find an electronically nonadiabatic excited-state silicon diffusion pathway involving "softened" Si-C bonding that presents an ∼2 eV lower diffusion barrier than the ground-state pathway. Beam-induced transition rates to this state indicate that the excited-state pathway is accessible through irradiation of the defect site. However, even in the limit of fully elastic scattering, upward nonadiabatic transitions are also possible along the diffusion coordinate, increasing the diffusion barrier and further demonstrating the potential for electronic nonadiabaticity to influence beam-induced atomic transformations in materials. We also propose some experimentally testable signatures of such excited-state pathways.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.0c03587</identifier><identifier>PMID: 33337886</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nano letters, 2021-01, Vol.21 (1), p.236-242</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-1e35575169c4e9952621e02150ff1ab57b69e3e029a19aba0502d49808c20bef3</citedby><cites>FETCH-LOGICAL-c419t-1e35575169c4e9952621e02150ff1ab57b69e3e029a19aba0502d49808c20bef3</cites><orcidid>0000-0001-6341-0355 ; 0000-0003-4906-3574 ; 0000-0002-7170-2902 ; 0000-0002-0738-425X ; 0000-0002-5630-0534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2763,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33337886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lingerfelt, David B</creatorcontrib><creatorcontrib>Yu, Tao</creatorcontrib><creatorcontrib>Yoshimura, Anthony</creatorcontrib><creatorcontrib>Ganesh, Panchapakesan</creatorcontrib><creatorcontrib>Jakowski, Jacek</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><title>Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Single atom impurities in graphene, substitutional silicon defects in particular, have been observed to diffuse under electron beam irradiation. However, the relative importance of elastic and inelastic scattering in facilitating their mobility remains unclear. Here, we employ excited-state electronic structure calculations to explore potential inelastic effects, and find an electronically nonadiabatic excited-state silicon diffusion pathway involving "softened" Si-C bonding that presents an ∼2 eV lower diffusion barrier than the ground-state pathway. Beam-induced transition rates to this state indicate that the excited-state pathway is accessible through irradiation of the defect site. However, even in the limit of fully elastic scattering, upward nonadiabatic transitions are also possible along the diffusion coordinate, increasing the diffusion barrier and further demonstrating the potential for electronic nonadiabaticity to influence beam-induced atomic transformations in materials. We also propose some experimentally testable signatures of such excited-state pathways.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwzAMhiMEYjD4Bwj1yKXDaZq2OaJtDKRpHIBzlKYOBHVJadoD_55M-_DFluXXr_0QckdhRiGjj0qHmVPOtzgMM9DAeFWekSvKGaSFENn5qa7yCbkO4QcABONwSSYsRllVxRVZbbxTjVW1GqxOlsagHkLiXbLAXZksrDFjsLFhXfJuW6u9Sxe-wybZRPOvXnXf6DDckAuj2oC3hzwln8_Lj_lLun5bvc6f1qnOqRhSiozzktNC6ByF4FmRUYzfcDCGqpqXdSGQxY5QVMSjgEPW5KKCSmdQo2FT8rDf2_X-d8QwyK0NGttWOfRjkFle0pxXwHkczfejuvch9Ghk19ut6v8kBblDKCNCeUQoDwij7P7gMNZbbE6iIzP2D5xcb28</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Lingerfelt, David B</creator><creator>Yu, Tao</creator><creator>Yoshimura, Anthony</creator><creator>Ganesh, Panchapakesan</creator><creator>Jakowski, Jacek</creator><creator>Sumpter, Bobby G</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6341-0355</orcidid><orcidid>https://orcid.org/0000-0003-4906-3574</orcidid><orcidid>https://orcid.org/0000-0002-7170-2902</orcidid><orcidid>https://orcid.org/0000-0002-0738-425X</orcidid><orcidid>https://orcid.org/0000-0002-5630-0534</orcidid></search><sort><creationdate>20210113</creationdate><title>Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes</title><author>Lingerfelt, David B ; Yu, Tao ; Yoshimura, Anthony ; Ganesh, Panchapakesan ; Jakowski, Jacek ; Sumpter, Bobby G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-1e35575169c4e9952621e02150ff1ab57b69e3e029a19aba0502d49808c20bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lingerfelt, David B</creatorcontrib><creatorcontrib>Yu, Tao</creatorcontrib><creatorcontrib>Yoshimura, Anthony</creatorcontrib><creatorcontrib>Ganesh, Panchapakesan</creatorcontrib><creatorcontrib>Jakowski, Jacek</creatorcontrib><creatorcontrib>Sumpter, Bobby G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lingerfelt, David B</au><au>Yu, Tao</au><au>Yoshimura, Anthony</au><au>Ganesh, Panchapakesan</au><au>Jakowski, Jacek</au><au>Sumpter, Bobby G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2021-01-13</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>236</spage><epage>242</epage><pages>236-242</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Single atom impurities in graphene, substitutional silicon defects in particular, have been observed to diffuse under electron beam irradiation. However, the relative importance of elastic and inelastic scattering in facilitating their mobility remains unclear. Here, we employ excited-state electronic structure calculations to explore potential inelastic effects, and find an electronically nonadiabatic excited-state silicon diffusion pathway involving "softened" Si-C bonding that presents an ∼2 eV lower diffusion barrier than the ground-state pathway. Beam-induced transition rates to this state indicate that the excited-state pathway is accessible through irradiation of the defect site. However, even in the limit of fully elastic scattering, upward nonadiabatic transitions are also possible along the diffusion coordinate, increasing the diffusion barrier and further demonstrating the potential for electronic nonadiabaticity to influence beam-induced atomic transformations in materials. We also propose some experimentally testable signatures of such excited-state pathways.</abstract><cop>United States</cop><pmid>33337886</pmid><doi>10.1021/acs.nanolett.0c03587</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6341-0355</orcidid><orcidid>https://orcid.org/0000-0003-4906-3574</orcidid><orcidid>https://orcid.org/0000-0002-7170-2902</orcidid><orcidid>https://orcid.org/0000-0002-0738-425X</orcidid><orcidid>https://orcid.org/0000-0002-5630-0534</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2021-01, Vol.21 (1), p.236-242 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2471458055 |
source | ACS Publications |
title | Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonadiabatic%20Effects%20on%20Defect%20Diffusion%20in%20Silicon-Doped%20Nanographenes&rft.jtitle=Nano%20letters&rft.au=Lingerfelt,%20David%20B&rft.date=2021-01-13&rft.volume=21&rft.issue=1&rft.spage=236&rft.epage=242&rft.pages=236-242&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.0c03587&rft_dat=%3Cproquest_cross%3E2471458055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471458055&rft_id=info:pmid/33337886&rfr_iscdi=true |