Deep Learning for Ultrasonic Crack Characterization in NDE

Machine learning for nondestructive evaluation (NDE) has the potential to bring significant improvements in defect characterization accuracy due to its effectiveness in pattern recognition problems. However, the application of modern machine learning methods to NDE has been obstructed by the scarcit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2021-05, Vol.68 (5), p.1854-1865
Hauptverfasser: Pyle, Richard J., Bevan, Rhodri L. T., Hughes, Robert R., Rachev, Rosen K., Ali, Amine Ait Si, Wilcox, Paul D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1865
container_issue 5
container_start_page 1854
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 68
creator Pyle, Richard J.
Bevan, Rhodri L. T.
Hughes, Robert R.
Rachev, Rosen K.
Ali, Amine Ait Si
Wilcox, Paul D.
description Machine learning for nondestructive evaluation (NDE) has the potential to bring significant improvements in defect characterization accuracy due to its effectiveness in pattern recognition problems. However, the application of modern machine learning methods to NDE has been obstructed by the scarcity of real defect data to train on. This article demonstrates how an efficient, hybrid finite element (FE) and ray-based simulation can be used to train a convolutional neural network (CNN) to characterize real defects. To demonstrate this methodology, an inline pipe inspection application is considered. This uses four plane wave images from two arrays and is applied to the characterization of cracks of length 1-5 mm and inclined at angles of up to 20° from the vertical. A standard image-based sizing technique, the 6-dB drop method, is used as a comparison point. For the 6-dB drop method, the average absolute error in length and angle prediction is ±1.1 mm and ±8.6°, respectively, while the CNN is almost four times more accurate at ±0.29 mm and ±2.9°. To demonstrate the adaptability of the deep learning approach, an error in sound speed estimation is included in the training and test set. With a maximum error of 10% in shear and longitudinal sound speed, the 6-dB drop method has an average error of ±1.5 mmm and ±12°, while the CNN has ±0.45 mm and ±3.0°. This demonstrates far superior crack characterization accuracy by using deep learning rather than traditional image-based sizing.
doi_str_mv 10.1109/TUFFC.2020.3045847
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2471456995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9298790</ieee_id><sourcerecordid>2519084269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-6ac9ed92d043467707bf803c96e84c1aea82d3ce8dc6cdb7a7d876af5cd31e673</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EgvLxB0BCkVhYUs7fNhsKFJAqWNrZcp0LBNqk2OkAv56UFgZueYd73tPpIeSUwpBSsFeT6WhUDBkwGHIQ0gi9QwZUMpkbK-UuGYAxMudA4YAcpvQGQIWwbJ8c8H4MUDkg17eIy2yMPjZ185JVbcym8y761DZ1yIrow3tWvPo-O4z1l-_qtsnqJnu6vTsme5WfJzzZ5hGZju4mxUM-fr5_LG7GeRCKdrnywWJpWQmCC6U16FllgAer0IhAPXrDSh7QlEGFcqa9Lo1WvpKh5BSV5kfkcnN3GduPFabOLeoUcD73Dbar5JjQVEhlrezRi3_oW7uKTf-dY5JaMIIp21NsQ4XYphSxcstYL3z8dBTc2qz7MevWZt3WbF86355ezRZY_lV-VfbA2QaoEfFvbZk12gL_Blhlezo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519084269</pqid></control><display><type>article</type><title>Deep Learning for Ultrasonic Crack Characterization in NDE</title><source>IEEE Electronic Library (IEL)</source><creator>Pyle, Richard J. ; Bevan, Rhodri L. T. ; Hughes, Robert R. ; Rachev, Rosen K. ; Ali, Amine Ait Si ; Wilcox, Paul D.</creator><creatorcontrib>Pyle, Richard J. ; Bevan, Rhodri L. T. ; Hughes, Robert R. ; Rachev, Rosen K. ; Ali, Amine Ait Si ; Wilcox, Paul D.</creatorcontrib><description>Machine learning for nondestructive evaluation (NDE) has the potential to bring significant improvements in defect characterization accuracy due to its effectiveness in pattern recognition problems. However, the application of modern machine learning methods to NDE has been obstructed by the scarcity of real defect data to train on. This article demonstrates how an efficient, hybrid finite element (FE) and ray-based simulation can be used to train a convolutional neural network (CNN) to characterize real defects. To demonstrate this methodology, an inline pipe inspection application is considered. This uses four plane wave images from two arrays and is applied to the characterization of cracks of length 1-5 mm and inclined at angles of up to 20° from the vertical. A standard image-based sizing technique, the 6-dB drop method, is used as a comparison point. For the 6-dB drop method, the average absolute error in length and angle prediction is ±1.1 mm and ±8.6°, respectively, while the CNN is almost four times more accurate at ±0.29 mm and ±2.9°. To demonstrate the adaptability of the deep learning approach, an error in sound speed estimation is included in the training and test set. With a maximum error of 10% in shear and longitudinal sound speed, the 6-dB drop method has an average error of ±1.5 mmm and ±12°, while the CNN has ±0.45 mm and ±3.0°. This demonstrates far superior crack characterization accuracy by using deep learning rather than traditional image-based sizing.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2020.3045847</identifier><identifier>PMID: 33338015</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Arrays ; Artificial neural networks ; Complexity theory ; Deep learning ; defect characterization ; Errors ; Finite element method ; Inspection ; Machine learning ; neural networks ; Nondestructive testing ; Pattern recognition ; plane wave imaging (PWI) ; Plane waves ; simulation ; Sizing ; Sound ; Surface cracks ; Training ; Ultrasonic testing ; ultrasound</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2021-05, Vol.68 (5), p.1854-1865</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-6ac9ed92d043467707bf803c96e84c1aea82d3ce8dc6cdb7a7d876af5cd31e673</citedby><cites>FETCH-LOGICAL-c461t-6ac9ed92d043467707bf803c96e84c1aea82d3ce8dc6cdb7a7d876af5cd31e673</cites><orcidid>0000-0003-1648-5228 ; 0000-0002-0798-6613 ; 0000-0001-9079-5115 ; 0000-0002-8569-8975 ; 0000-0002-5236-7467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9298790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9298790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33338015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pyle, Richard J.</creatorcontrib><creatorcontrib>Bevan, Rhodri L. T.</creatorcontrib><creatorcontrib>Hughes, Robert R.</creatorcontrib><creatorcontrib>Rachev, Rosen K.</creatorcontrib><creatorcontrib>Ali, Amine Ait Si</creatorcontrib><creatorcontrib>Wilcox, Paul D.</creatorcontrib><title>Deep Learning for Ultrasonic Crack Characterization in NDE</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Machine learning for nondestructive evaluation (NDE) has the potential to bring significant improvements in defect characterization accuracy due to its effectiveness in pattern recognition problems. However, the application of modern machine learning methods to NDE has been obstructed by the scarcity of real defect data to train on. This article demonstrates how an efficient, hybrid finite element (FE) and ray-based simulation can be used to train a convolutional neural network (CNN) to characterize real defects. To demonstrate this methodology, an inline pipe inspection application is considered. This uses four plane wave images from two arrays and is applied to the characterization of cracks of length 1-5 mm and inclined at angles of up to 20° from the vertical. A standard image-based sizing technique, the 6-dB drop method, is used as a comparison point. For the 6-dB drop method, the average absolute error in length and angle prediction is ±1.1 mm and ±8.6°, respectively, while the CNN is almost four times more accurate at ±0.29 mm and ±2.9°. To demonstrate the adaptability of the deep learning approach, an error in sound speed estimation is included in the training and test set. With a maximum error of 10% in shear and longitudinal sound speed, the 6-dB drop method has an average error of ±1.5 mmm and ±12°, while the CNN has ±0.45 mm and ±3.0°. This demonstrates far superior crack characterization accuracy by using deep learning rather than traditional image-based sizing.</description><subject>Acoustics</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Complexity theory</subject><subject>Deep learning</subject><subject>defect characterization</subject><subject>Errors</subject><subject>Finite element method</subject><subject>Inspection</subject><subject>Machine learning</subject><subject>neural networks</subject><subject>Nondestructive testing</subject><subject>Pattern recognition</subject><subject>plane wave imaging (PWI)</subject><subject>Plane waves</subject><subject>simulation</subject><subject>Sizing</subject><subject>Sound</subject><subject>Surface cracks</subject><subject>Training</subject><subject>Ultrasonic testing</subject><subject>ultrasound</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EgvLxB0BCkVhYUs7fNhsKFJAqWNrZcp0LBNqk2OkAv56UFgZueYd73tPpIeSUwpBSsFeT6WhUDBkwGHIQ0gi9QwZUMpkbK-UuGYAxMudA4YAcpvQGQIWwbJ8c8H4MUDkg17eIy2yMPjZ185JVbcym8y761DZ1yIrow3tWvPo-O4z1l-_qtsnqJnu6vTsme5WfJzzZ5hGZju4mxUM-fr5_LG7GeRCKdrnywWJpWQmCC6U16FllgAer0IhAPXrDSh7QlEGFcqa9Lo1WvpKh5BSV5kfkcnN3GduPFabOLeoUcD73Dbar5JjQVEhlrezRi3_oW7uKTf-dY5JaMIIp21NsQ4XYphSxcstYL3z8dBTc2qz7MevWZt3WbF86355ezRZY_lV-VfbA2QaoEfFvbZk12gL_Blhlezo</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Pyle, Richard J.</creator><creator>Bevan, Rhodri L. T.</creator><creator>Hughes, Robert R.</creator><creator>Rachev, Rosen K.</creator><creator>Ali, Amine Ait Si</creator><creator>Wilcox, Paul D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1648-5228</orcidid><orcidid>https://orcid.org/0000-0002-0798-6613</orcidid><orcidid>https://orcid.org/0000-0001-9079-5115</orcidid><orcidid>https://orcid.org/0000-0002-8569-8975</orcidid><orcidid>https://orcid.org/0000-0002-5236-7467</orcidid></search><sort><creationdate>20210501</creationdate><title>Deep Learning for Ultrasonic Crack Characterization in NDE</title><author>Pyle, Richard J. ; Bevan, Rhodri L. T. ; Hughes, Robert R. ; Rachev, Rosen K. ; Ali, Amine Ait Si ; Wilcox, Paul D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-6ac9ed92d043467707bf803c96e84c1aea82d3ce8dc6cdb7a7d876af5cd31e673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Complexity theory</topic><topic>Deep learning</topic><topic>defect characterization</topic><topic>Errors</topic><topic>Finite element method</topic><topic>Inspection</topic><topic>Machine learning</topic><topic>neural networks</topic><topic>Nondestructive testing</topic><topic>Pattern recognition</topic><topic>plane wave imaging (PWI)</topic><topic>Plane waves</topic><topic>simulation</topic><topic>Sizing</topic><topic>Sound</topic><topic>Surface cracks</topic><topic>Training</topic><topic>Ultrasonic testing</topic><topic>ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pyle, Richard J.</creatorcontrib><creatorcontrib>Bevan, Rhodri L. T.</creatorcontrib><creatorcontrib>Hughes, Robert R.</creatorcontrib><creatorcontrib>Rachev, Rosen K.</creatorcontrib><creatorcontrib>Ali, Amine Ait Si</creatorcontrib><creatorcontrib>Wilcox, Paul D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pyle, Richard J.</au><au>Bevan, Rhodri L. T.</au><au>Hughes, Robert R.</au><au>Rachev, Rosen K.</au><au>Ali, Amine Ait Si</au><au>Wilcox, Paul D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning for Ultrasonic Crack Characterization in NDE</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>68</volume><issue>5</issue><spage>1854</spage><epage>1865</epage><pages>1854-1865</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Machine learning for nondestructive evaluation (NDE) has the potential to bring significant improvements in defect characterization accuracy due to its effectiveness in pattern recognition problems. However, the application of modern machine learning methods to NDE has been obstructed by the scarcity of real defect data to train on. This article demonstrates how an efficient, hybrid finite element (FE) and ray-based simulation can be used to train a convolutional neural network (CNN) to characterize real defects. To demonstrate this methodology, an inline pipe inspection application is considered. This uses four plane wave images from two arrays and is applied to the characterization of cracks of length 1-5 mm and inclined at angles of up to 20° from the vertical. A standard image-based sizing technique, the 6-dB drop method, is used as a comparison point. For the 6-dB drop method, the average absolute error in length and angle prediction is ±1.1 mm and ±8.6°, respectively, while the CNN is almost four times more accurate at ±0.29 mm and ±2.9°. To demonstrate the adaptability of the deep learning approach, an error in sound speed estimation is included in the training and test set. With a maximum error of 10% in shear and longitudinal sound speed, the 6-dB drop method has an average error of ±1.5 mmm and ±12°, while the CNN has ±0.45 mm and ±3.0°. This demonstrates far superior crack characterization accuracy by using deep learning rather than traditional image-based sizing.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33338015</pmid><doi>10.1109/TUFFC.2020.3045847</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1648-5228</orcidid><orcidid>https://orcid.org/0000-0002-0798-6613</orcidid><orcidid>https://orcid.org/0000-0001-9079-5115</orcidid><orcidid>https://orcid.org/0000-0002-8569-8975</orcidid><orcidid>https://orcid.org/0000-0002-5236-7467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2021-05, Vol.68 (5), p.1854-1865
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_2471456995
source IEEE Electronic Library (IEL)
subjects Acoustics
Arrays
Artificial neural networks
Complexity theory
Deep learning
defect characterization
Errors
Finite element method
Inspection
Machine learning
neural networks
Nondestructive testing
Pattern recognition
plane wave imaging (PWI)
Plane waves
simulation
Sizing
Sound
Surface cracks
Training
Ultrasonic testing
ultrasound
title Deep Learning for Ultrasonic Crack Characterization in NDE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20for%20Ultrasonic%20Crack%20Characterization%20in%20NDE&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Pyle,%20Richard%20J.&rft.date=2021-05-01&rft.volume=68&rft.issue=5&rft.spage=1854&rft.epage=1865&rft.pages=1854-1865&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2020.3045847&rft_dat=%3Cproquest_RIE%3E2519084269%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519084269&rft_id=info:pmid/33338015&rft_ieee_id=9298790&rfr_iscdi=true