Multistate Memory Enabled by Interface Engineering Based on Multilayer Tungsten Diselenide

The diversification of data types and the explosive increase of data size in the information era continuously required to miniaturize the memory devices with high data storage capability. Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) are promising candidates for flexib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-12, Vol.12 (52), p.58428-58434
Hauptverfasser: Shen, Hongzhi, Ren, Junwen, Li, Junze, Chen, Yingying, Lan, Shangui, Wang, Jiaqi, Wang, Haizhen, Li, Dehui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58434
container_issue 52
container_start_page 58428
container_title ACS applied materials & interfaces
container_volume 12
creator Shen, Hongzhi
Ren, Junwen
Li, Junze
Chen, Yingying
Lan, Shangui
Wang, Jiaqi
Wang, Haizhen
Li, Dehui
description The diversification of data types and the explosive increase of data size in the information era continuously required to miniaturize the memory devices with high data storage capability. Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) are promising candidates for flexible and transparent electronic and optoelectronic devices with high integration density. Multistate memory devices based on TMDs could possess high data storage capability with a large integration density and thus exhibit great potential applications in the field of data storage. Here, we report the multistate data storage based on multilayer tungsten diselenide (WSe2) transistors by interface engineering. The multiple resistance states of the WSe2 transistors are achieved by applying different gate voltage pulses, and the switching ratio of the memory can be as large as 105 with high cycling endurance. The water and oxygen molecules (H2O/O2) trapped at the interface between the SiO2 substrate and WSe2 introduce the trap states and thus the large hysteresis of the transfer curves, which leads to the multistate data storage. In addition, the laminated Au thin film electrodes make the contact interface between the electrodes and WSe2 free of dangling bond and Fermi level pinning, thus giving rise to the excellent performance of memory devices. Importantly, the interface trap states can be easily controlled by a simple oxygen plasma treatment of the SiO2 substrate, and subsequently, the performance of the multistate memory devices can be manipulated. Our findings provide a simple and efficient strategy to engineer the interface states for the multistate data storage applications and would motivate more investigations on the trap state-associated applications.
doi_str_mv 10.1021/acsami.0c19443
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2471455967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471455967</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-addc354806207b789b2be0d6b599e4dc7454162f14219b5cc52a0bca484c46b43</originalsourceid><addsrcrecordid>eNp1kL1PwzAUxC0EoqWwMqKMCKnFdux8jFAKVGrFUhYWy3ZeKleJU-xkyH-PS0o3vJz1_LvT8yF0S_CMYEoepfayNjOsSc5YfIbGB51mlNPz052xEbryfodxElPML9EoDofiNB-jr3VXtca3soVoDXXj-mhhpaqgiFQfLW0LrpQawnBrLIAzdhs9Sx-eGxv9eivZg4s2nd36Fmz0YjxUYE0B1-iilJWHm6NO0OfrYjN_n64-3pbzp9VUxjFup7IodMxZhpOwkUqzXFEFuEgUz3NghU4ZZyShJWGU5IprzanESkuWMc0SxeIJuh9y96757sC3ojZeQ1VJC03nBWUpYZznSRrQ2YBq13jvoBR7Z2rpekGwOPQphj7Fsc9guDtmd6qG4oT_FRiAhwEIRrFrOmfDV_9L-wEm7IAP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471455967</pqid></control><display><type>article</type><title>Multistate Memory Enabled by Interface Engineering Based on Multilayer Tungsten Diselenide</title><source>ACS Publications</source><creator>Shen, Hongzhi ; Ren, Junwen ; Li, Junze ; Chen, Yingying ; Lan, Shangui ; Wang, Jiaqi ; Wang, Haizhen ; Li, Dehui</creator><creatorcontrib>Shen, Hongzhi ; Ren, Junwen ; Li, Junze ; Chen, Yingying ; Lan, Shangui ; Wang, Jiaqi ; Wang, Haizhen ; Li, Dehui</creatorcontrib><description>The diversification of data types and the explosive increase of data size in the information era continuously required to miniaturize the memory devices with high data storage capability. Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) are promising candidates for flexible and transparent electronic and optoelectronic devices with high integration density. Multistate memory devices based on TMDs could possess high data storage capability with a large integration density and thus exhibit great potential applications in the field of data storage. Here, we report the multistate data storage based on multilayer tungsten diselenide (WSe2) transistors by interface engineering. The multiple resistance states of the WSe2 transistors are achieved by applying different gate voltage pulses, and the switching ratio of the memory can be as large as 105 with high cycling endurance. The water and oxygen molecules (H2O/O2) trapped at the interface between the SiO2 substrate and WSe2 introduce the trap states and thus the large hysteresis of the transfer curves, which leads to the multistate data storage. In addition, the laminated Au thin film electrodes make the contact interface between the electrodes and WSe2 free of dangling bond and Fermi level pinning, thus giving rise to the excellent performance of memory devices. Importantly, the interface trap states can be easily controlled by a simple oxygen plasma treatment of the SiO2 substrate, and subsequently, the performance of the multistate memory devices can be manipulated. Our findings provide a simple and efficient strategy to engineer the interface states for the multistate data storage applications and would motivate more investigations on the trap state-associated applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c19443</identifier><identifier>PMID: 33332079</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2020-12, Vol.12 (52), p.58428-58434</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-addc354806207b789b2be0d6b599e4dc7454162f14219b5cc52a0bca484c46b43</citedby><cites>FETCH-LOGICAL-a330t-addc354806207b789b2be0d6b599e4dc7454162f14219b5cc52a0bca484c46b43</cites><orcidid>0000-0002-5945-220X ; 0000-0001-8837-5349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c19443$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c19443$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33332079$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Hongzhi</creatorcontrib><creatorcontrib>Ren, Junwen</creatorcontrib><creatorcontrib>Li, Junze</creatorcontrib><creatorcontrib>Chen, Yingying</creatorcontrib><creatorcontrib>Lan, Shangui</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Wang, Haizhen</creatorcontrib><creatorcontrib>Li, Dehui</creatorcontrib><title>Multistate Memory Enabled by Interface Engineering Based on Multilayer Tungsten Diselenide</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The diversification of data types and the explosive increase of data size in the information era continuously required to miniaturize the memory devices with high data storage capability. Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) are promising candidates for flexible and transparent electronic and optoelectronic devices with high integration density. Multistate memory devices based on TMDs could possess high data storage capability with a large integration density and thus exhibit great potential applications in the field of data storage. Here, we report the multistate data storage based on multilayer tungsten diselenide (WSe2) transistors by interface engineering. The multiple resistance states of the WSe2 transistors are achieved by applying different gate voltage pulses, and the switching ratio of the memory can be as large as 105 with high cycling endurance. The water and oxygen molecules (H2O/O2) trapped at the interface between the SiO2 substrate and WSe2 introduce the trap states and thus the large hysteresis of the transfer curves, which leads to the multistate data storage. In addition, the laminated Au thin film electrodes make the contact interface between the electrodes and WSe2 free of dangling bond and Fermi level pinning, thus giving rise to the excellent performance of memory devices. Importantly, the interface trap states can be easily controlled by a simple oxygen plasma treatment of the SiO2 substrate, and subsequently, the performance of the multistate memory devices can be manipulated. Our findings provide a simple and efficient strategy to engineer the interface states for the multistate data storage applications and would motivate more investigations on the trap state-associated applications.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAUxC0EoqWwMqKMCKnFdux8jFAKVGrFUhYWy3ZeKleJU-xkyH-PS0o3vJz1_LvT8yF0S_CMYEoepfayNjOsSc5YfIbGB51mlNPz052xEbryfodxElPML9EoDofiNB-jr3VXtca3soVoDXXj-mhhpaqgiFQfLW0LrpQawnBrLIAzdhs9Sx-eGxv9eivZg4s2nd36Fmz0YjxUYE0B1-iilJWHm6NO0OfrYjN_n64-3pbzp9VUxjFup7IodMxZhpOwkUqzXFEFuEgUz3NghU4ZZyShJWGU5IprzanESkuWMc0SxeIJuh9y96757sC3ojZeQ1VJC03nBWUpYZznSRrQ2YBq13jvoBR7Z2rpekGwOPQphj7Fsc9guDtmd6qG4oT_FRiAhwEIRrFrOmfDV_9L-wEm7IAP</recordid><startdate>20201230</startdate><enddate>20201230</enddate><creator>Shen, Hongzhi</creator><creator>Ren, Junwen</creator><creator>Li, Junze</creator><creator>Chen, Yingying</creator><creator>Lan, Shangui</creator><creator>Wang, Jiaqi</creator><creator>Wang, Haizhen</creator><creator>Li, Dehui</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5945-220X</orcidid><orcidid>https://orcid.org/0000-0001-8837-5349</orcidid></search><sort><creationdate>20201230</creationdate><title>Multistate Memory Enabled by Interface Engineering Based on Multilayer Tungsten Diselenide</title><author>Shen, Hongzhi ; Ren, Junwen ; Li, Junze ; Chen, Yingying ; Lan, Shangui ; Wang, Jiaqi ; Wang, Haizhen ; Li, Dehui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-addc354806207b789b2be0d6b599e4dc7454162f14219b5cc52a0bca484c46b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Hongzhi</creatorcontrib><creatorcontrib>Ren, Junwen</creatorcontrib><creatorcontrib>Li, Junze</creatorcontrib><creatorcontrib>Chen, Yingying</creatorcontrib><creatorcontrib>Lan, Shangui</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Wang, Haizhen</creatorcontrib><creatorcontrib>Li, Dehui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Hongzhi</au><au>Ren, Junwen</au><au>Li, Junze</au><au>Chen, Yingying</au><au>Lan, Shangui</au><au>Wang, Jiaqi</au><au>Wang, Haizhen</au><au>Li, Dehui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistate Memory Enabled by Interface Engineering Based on Multilayer Tungsten Diselenide</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-12-30</date><risdate>2020</risdate><volume>12</volume><issue>52</issue><spage>58428</spage><epage>58434</epage><pages>58428-58434</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The diversification of data types and the explosive increase of data size in the information era continuously required to miniaturize the memory devices with high data storage capability. Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) are promising candidates for flexible and transparent electronic and optoelectronic devices with high integration density. Multistate memory devices based on TMDs could possess high data storage capability with a large integration density and thus exhibit great potential applications in the field of data storage. Here, we report the multistate data storage based on multilayer tungsten diselenide (WSe2) transistors by interface engineering. The multiple resistance states of the WSe2 transistors are achieved by applying different gate voltage pulses, and the switching ratio of the memory can be as large as 105 with high cycling endurance. The water and oxygen molecules (H2O/O2) trapped at the interface between the SiO2 substrate and WSe2 introduce the trap states and thus the large hysteresis of the transfer curves, which leads to the multistate data storage. In addition, the laminated Au thin film electrodes make the contact interface between the electrodes and WSe2 free of dangling bond and Fermi level pinning, thus giving rise to the excellent performance of memory devices. Importantly, the interface trap states can be easily controlled by a simple oxygen plasma treatment of the SiO2 substrate, and subsequently, the performance of the multistate memory devices can be manipulated. Our findings provide a simple and efficient strategy to engineer the interface states for the multistate data storage applications and would motivate more investigations on the trap state-associated applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33332079</pmid><doi>10.1021/acsami.0c19443</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5945-220X</orcidid><orcidid>https://orcid.org/0000-0001-8837-5349</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-12, Vol.12 (52), p.58428-58434
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2471455967
source ACS Publications
subjects Surfaces, Interfaces, and Applications
title Multistate Memory Enabled by Interface Engineering Based on Multilayer Tungsten Diselenide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistate%20Memory%20Enabled%20by%20Interface%20Engineering%20Based%20on%20Multilayer%20Tungsten%20Diselenide&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Shen,%20Hongzhi&rft.date=2020-12-30&rft.volume=12&rft.issue=52&rft.spage=58428&rft.epage=58434&rft.pages=58428-58434&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c19443&rft_dat=%3Cproquest_cross%3E2471455967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471455967&rft_id=info:pmid/33332079&rfr_iscdi=true