Entanglement on an optical atomic-clock transition
State-of-the-art atomic clocks are based on the precise detection of the energy difference between two atomic levels, which is measured in terms of the quantum phase accumulated over a given time interval 1 – 4 . The stability of optical-lattice clocks (OLCs) is limited both by the interrupted inter...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-12, Vol.588 (7838), p.414-418 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 418 |
---|---|
container_issue | 7838 |
container_start_page | 414 |
container_title | Nature (London) |
container_volume | 588 |
creator | Pedrozo-Peñafiel, Edwin Colombo, Simone Shu, Chi Adiyatullin, Albert F. Li, Zeyang Mendez, Enrique Braverman, Boris Kawasaki, Akio Akamatsu, Daisuke Xiao, Yanhong Vuletić, Vladan |
description | State-of-the-art atomic clocks are based on the precise detection of the energy difference between two atomic levels, which is measured in terms of the quantum phase accumulated over a given time interval
1
–
4
. The stability of optical-lattice clocks (OLCs) is limited both by the interrupted interrogation of the atomic system by the local-oscillator laser (Dick noise
5
) and by the standard quantum limit (SQL) that arises from the quantum noise associated with discrete measurement outcomes. Although schemes for removing the Dick noise have been recently proposed and implemented
4
,
6
–
8
, performance beyond the SQL by engineering quantum correlations (entanglement) between atoms
9
–
20
has been demonstrated only in proof-of-principle experiments with microwave clocks of limited stability. The generation of entanglement on an optical-clock transition and operation of an OLC beyond the SQL represent important goals in quantum metrology, but have not yet been demonstrated experimentally
16
. Here we report the creation of a many-atom entangled state on an OLC transition, and use it to demonstrate a Ramsey sequence with an Allan deviation below the SQL after subtraction of the local-oscillator noise. We achieve a metrological gain of
4
.
4
-
0
.
4
+
0
.
6
decibels over the SQL by using an ensemble consisting of a few hundred ytterbium-171 atoms, corresponding to a reduction of the averaging time by a factor of 2.8 ± 0.3. Our results are currently limited by the phase noise of the local oscillator and Dick noise, but demonstrate the possible performance improvement in state-of-the-art OLCs
1
–
4
through the use of entanglement. This will enable further advances in timekeeping precision and accuracy, with many scientific and technological applications, including precision tests of the fundamental laws of physics
21
–
23
, geodesy
24
–
26
and gravitational-wave detection
27
.
A many-atom state of trapped
171
Yb atoms that are entangled on an optical atomic-clock transition overcomes the standard quantum limit, providing a proof-of-principle demonstration towards entanglement-based optical atomic clocks. |
doi_str_mv | 10.1038/s41586-020-3006-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2470903618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649636869</galeid><sourcerecordid>A649636869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-c85d66e8fa1836482eeba494bbc35354256fd1a6969154342b8f8457ad3c52533</originalsourceid><addsrcrecordid>eNp10u9r1DAYB_AgDnc7_QN8I0XfTEZmfj5NXx7H1MFQ0IkvQ5qmpbNNbk0K-t-b46bbjRt9EWg_z5c0-SL0mpJzSrj6EAWVCjBhBHNCANNnaEFFCViAKp-jBSFMYaI4HKOTGG8IIZKW4gU65pwzBaAWiF34ZHw3uNH5VARfGF-ETeqtGQqTwthbbIdgfxVpMj72qQ_-JTpqzRDdq7t1iX58vLhef8ZXXz9drldX2MpSJGyVbACcag3NOxCKOVcbUYm6tlxyKZiEtqEGKqioFFywWrVKyNI03EomOV-i013uZgq3s4tJj320bhiMd2GOmomSVIRDjl-id4_oTZgnn3e3VbISSgDcq84MTve-Dfmn7DZUr0BUwEFBlRU-oDrn3WSG4F3b59d7_u0Bbzf9rX6Izg-g_DQuH_HB1Pd7A9kk9zt1Zo5RX37_tm_Pnrar65_rL_ua7rSdQoyTa_Vm6kcz_dGU6G2t9K5WOtdKb2ulaZ55c3e-cz265v_Evx5lwHYg5k--c9P9BTyd-heZpNBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475948466</pqid></control><display><type>article</type><title>Entanglement on an optical atomic-clock transition</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Pedrozo-Peñafiel, Edwin ; Colombo, Simone ; Shu, Chi ; Adiyatullin, Albert F. ; Li, Zeyang ; Mendez, Enrique ; Braverman, Boris ; Kawasaki, Akio ; Akamatsu, Daisuke ; Xiao, Yanhong ; Vuletić, Vladan</creator><creatorcontrib>Pedrozo-Peñafiel, Edwin ; Colombo, Simone ; Shu, Chi ; Adiyatullin, Albert F. ; Li, Zeyang ; Mendez, Enrique ; Braverman, Boris ; Kawasaki, Akio ; Akamatsu, Daisuke ; Xiao, Yanhong ; Vuletić, Vladan</creatorcontrib><description>State-of-the-art atomic clocks are based on the precise detection of the energy difference between two atomic levels, which is measured in terms of the quantum phase accumulated over a given time interval
1
–
4
. The stability of optical-lattice clocks (OLCs) is limited both by the interrupted interrogation of the atomic system by the local-oscillator laser (Dick noise
5
) and by the standard quantum limit (SQL) that arises from the quantum noise associated with discrete measurement outcomes. Although schemes for removing the Dick noise have been recently proposed and implemented
4
,
6
–
8
, performance beyond the SQL by engineering quantum correlations (entanglement) between atoms
9
–
20
has been demonstrated only in proof-of-principle experiments with microwave clocks of limited stability. The generation of entanglement on an optical-clock transition and operation of an OLC beyond the SQL represent important goals in quantum metrology, but have not yet been demonstrated experimentally
16
. Here we report the creation of a many-atom entangled state on an OLC transition, and use it to demonstrate a Ramsey sequence with an Allan deviation below the SQL after subtraction of the local-oscillator noise. We achieve a metrological gain of
4
.
4
-
0
.
4
+
0
.
6
decibels over the SQL by using an ensemble consisting of a few hundred ytterbium-171 atoms, corresponding to a reduction of the averaging time by a factor of 2.8 ± 0.3. Our results are currently limited by the phase noise of the local oscillator and Dick noise, but demonstrate the possible performance improvement in state-of-the-art OLCs
1
–
4
through the use of entanglement. This will enable further advances in timekeeping precision and accuracy, with many scientific and technological applications, including precision tests of the fundamental laws of physics
21
–
23
, geodesy
24
–
26
and gravitational-wave detection
27
.
A many-atom state of trapped
171
Yb atoms that are entangled on an optical atomic-clock transition overcomes the standard quantum limit, providing a proof-of-principle demonstration towards entanglement-based optical atomic clocks.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-3006-1</identifier><identifier>PMID: 33328668</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/766/36/1121 ; 639/766/36/1125 ; 639/766/483/1255 ; Atomic clocks ; Clocks & watches ; Decibels ; Entangled states ; Gravitational waves ; Gravity ; Humanities and Social Sciences ; Interrogation ; Lasers ; multidisciplinary ; Noise ; Noise measurement ; Optical lattices ; Properties ; Quantum entanglement ; Quantum theory ; Query languages ; Questioning ; Science ; Science (multidisciplinary) ; Stability ; Subtraction ; Ytterbium</subject><ispartof>Nature (London), 2020-12, Vol.588 (7838), p.414-418</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 17, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-c85d66e8fa1836482eeba494bbc35354256fd1a6969154342b8f8457ad3c52533</citedby><cites>FETCH-LOGICAL-c574t-c85d66e8fa1836482eeba494bbc35354256fd1a6969154342b8f8457ad3c52533</cites><orcidid>0000-0001-6841-5905 ; 0000-0002-7713-6235 ; 0000-0001-5193-2711 ; 0000-0002-9786-0538 ; 0000-0001-8353-8903 ; 0000-0002-3741-1765 ; 0000-0001-7294-8878 ; 0000-0003-4348-9910 ; 0000-0003-0981-9429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-3006-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-3006-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33328668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedrozo-Peñafiel, Edwin</creatorcontrib><creatorcontrib>Colombo, Simone</creatorcontrib><creatorcontrib>Shu, Chi</creatorcontrib><creatorcontrib>Adiyatullin, Albert F.</creatorcontrib><creatorcontrib>Li, Zeyang</creatorcontrib><creatorcontrib>Mendez, Enrique</creatorcontrib><creatorcontrib>Braverman, Boris</creatorcontrib><creatorcontrib>Kawasaki, Akio</creatorcontrib><creatorcontrib>Akamatsu, Daisuke</creatorcontrib><creatorcontrib>Xiao, Yanhong</creatorcontrib><creatorcontrib>Vuletić, Vladan</creatorcontrib><title>Entanglement on an optical atomic-clock transition</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>State-of-the-art atomic clocks are based on the precise detection of the energy difference between two atomic levels, which is measured in terms of the quantum phase accumulated over a given time interval
1
–
4
. The stability of optical-lattice clocks (OLCs) is limited both by the interrupted interrogation of the atomic system by the local-oscillator laser (Dick noise
5
) and by the standard quantum limit (SQL) that arises from the quantum noise associated with discrete measurement outcomes. Although schemes for removing the Dick noise have been recently proposed and implemented
4
,
6
–
8
, performance beyond the SQL by engineering quantum correlations (entanglement) between atoms
9
–
20
has been demonstrated only in proof-of-principle experiments with microwave clocks of limited stability. The generation of entanglement on an optical-clock transition and operation of an OLC beyond the SQL represent important goals in quantum metrology, but have not yet been demonstrated experimentally
16
. Here we report the creation of a many-atom entangled state on an OLC transition, and use it to demonstrate a Ramsey sequence with an Allan deviation below the SQL after subtraction of the local-oscillator noise. We achieve a metrological gain of
4
.
4
-
0
.
4
+
0
.
6
decibels over the SQL by using an ensemble consisting of a few hundred ytterbium-171 atoms, corresponding to a reduction of the averaging time by a factor of 2.8 ± 0.3. Our results are currently limited by the phase noise of the local oscillator and Dick noise, but demonstrate the possible performance improvement in state-of-the-art OLCs
1
–
4
through the use of entanglement. This will enable further advances in timekeeping precision and accuracy, with many scientific and technological applications, including precision tests of the fundamental laws of physics
21
–
23
, geodesy
24
–
26
and gravitational-wave detection
27
.
A many-atom state of trapped
171
Yb atoms that are entangled on an optical atomic-clock transition overcomes the standard quantum limit, providing a proof-of-principle demonstration towards entanglement-based optical atomic clocks.</description><subject>140/125</subject><subject>639/766/36/1121</subject><subject>639/766/36/1125</subject><subject>639/766/483/1255</subject><subject>Atomic clocks</subject><subject>Clocks & watches</subject><subject>Decibels</subject><subject>Entangled states</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Humanities and Social Sciences</subject><subject>Interrogation</subject><subject>Lasers</subject><subject>multidisciplinary</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Optical lattices</subject><subject>Properties</subject><subject>Quantum entanglement</subject><subject>Quantum theory</subject><subject>Query languages</subject><subject>Questioning</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stability</subject><subject>Subtraction</subject><subject>Ytterbium</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10u9r1DAYB_AgDnc7_QN8I0XfTEZmfj5NXx7H1MFQ0IkvQ5qmpbNNbk0K-t-b46bbjRt9EWg_z5c0-SL0mpJzSrj6EAWVCjBhBHNCANNnaEFFCViAKp-jBSFMYaI4HKOTGG8IIZKW4gU65pwzBaAWiF34ZHw3uNH5VARfGF-ETeqtGQqTwthbbIdgfxVpMj72qQ_-JTpqzRDdq7t1iX58vLhef8ZXXz9drldX2MpSJGyVbACcag3NOxCKOVcbUYm6tlxyKZiEtqEGKqioFFywWrVKyNI03EomOV-i013uZgq3s4tJj320bhiMd2GOmomSVIRDjl-id4_oTZgnn3e3VbISSgDcq84MTve-Dfmn7DZUr0BUwEFBlRU-oDrn3WSG4F3b59d7_u0Bbzf9rX6Izg-g_DQuH_HB1Pd7A9kk9zt1Zo5RX37_tm_Pnrar65_rL_ua7rSdQoyTa_Vm6kcz_dGU6G2t9K5WOtdKb2ulaZ55c3e-cz265v_Evx5lwHYg5k--c9P9BTyd-heZpNBU</recordid><startdate>20201217</startdate><enddate>20201217</enddate><creator>Pedrozo-Peñafiel, Edwin</creator><creator>Colombo, Simone</creator><creator>Shu, Chi</creator><creator>Adiyatullin, Albert F.</creator><creator>Li, Zeyang</creator><creator>Mendez, Enrique</creator><creator>Braverman, Boris</creator><creator>Kawasaki, Akio</creator><creator>Akamatsu, Daisuke</creator><creator>Xiao, Yanhong</creator><creator>Vuletić, Vladan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6841-5905</orcidid><orcidid>https://orcid.org/0000-0002-7713-6235</orcidid><orcidid>https://orcid.org/0000-0001-5193-2711</orcidid><orcidid>https://orcid.org/0000-0002-9786-0538</orcidid><orcidid>https://orcid.org/0000-0001-8353-8903</orcidid><orcidid>https://orcid.org/0000-0002-3741-1765</orcidid><orcidid>https://orcid.org/0000-0001-7294-8878</orcidid><orcidid>https://orcid.org/0000-0003-4348-9910</orcidid><orcidid>https://orcid.org/0000-0003-0981-9429</orcidid></search><sort><creationdate>20201217</creationdate><title>Entanglement on an optical atomic-clock transition</title><author>Pedrozo-Peñafiel, Edwin ; Colombo, Simone ; Shu, Chi ; Adiyatullin, Albert F. ; Li, Zeyang ; Mendez, Enrique ; Braverman, Boris ; Kawasaki, Akio ; Akamatsu, Daisuke ; Xiao, Yanhong ; Vuletić, Vladan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-c85d66e8fa1836482eeba494bbc35354256fd1a6969154342b8f8457ad3c52533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/125</topic><topic>639/766/36/1121</topic><topic>639/766/36/1125</topic><topic>639/766/483/1255</topic><topic>Atomic clocks</topic><topic>Clocks & watches</topic><topic>Decibels</topic><topic>Entangled states</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Humanities and Social Sciences</topic><topic>Interrogation</topic><topic>Lasers</topic><topic>multidisciplinary</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Optical lattices</topic><topic>Properties</topic><topic>Quantum entanglement</topic><topic>Quantum theory</topic><topic>Query languages</topic><topic>Questioning</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stability</topic><topic>Subtraction</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedrozo-Peñafiel, Edwin</creatorcontrib><creatorcontrib>Colombo, Simone</creatorcontrib><creatorcontrib>Shu, Chi</creatorcontrib><creatorcontrib>Adiyatullin, Albert F.</creatorcontrib><creatorcontrib>Li, Zeyang</creatorcontrib><creatorcontrib>Mendez, Enrique</creatorcontrib><creatorcontrib>Braverman, Boris</creatorcontrib><creatorcontrib>Kawasaki, Akio</creatorcontrib><creatorcontrib>Akamatsu, Daisuke</creatorcontrib><creatorcontrib>Xiao, Yanhong</creatorcontrib><creatorcontrib>Vuletić, Vladan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedrozo-Peñafiel, Edwin</au><au>Colombo, Simone</au><au>Shu, Chi</au><au>Adiyatullin, Albert F.</au><au>Li, Zeyang</au><au>Mendez, Enrique</au><au>Braverman, Boris</au><au>Kawasaki, Akio</au><au>Akamatsu, Daisuke</au><au>Xiao, Yanhong</au><au>Vuletić, Vladan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement on an optical atomic-clock transition</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-12-17</date><risdate>2020</risdate><volume>588</volume><issue>7838</issue><spage>414</spage><epage>418</epage><pages>414-418</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>State-of-the-art atomic clocks are based on the precise detection of the energy difference between two atomic levels, which is measured in terms of the quantum phase accumulated over a given time interval
1
–
4
. The stability of optical-lattice clocks (OLCs) is limited both by the interrupted interrogation of the atomic system by the local-oscillator laser (Dick noise
5
) and by the standard quantum limit (SQL) that arises from the quantum noise associated with discrete measurement outcomes. Although schemes for removing the Dick noise have been recently proposed and implemented
4
,
6
–
8
, performance beyond the SQL by engineering quantum correlations (entanglement) between atoms
9
–
20
has been demonstrated only in proof-of-principle experiments with microwave clocks of limited stability. The generation of entanglement on an optical-clock transition and operation of an OLC beyond the SQL represent important goals in quantum metrology, but have not yet been demonstrated experimentally
16
. Here we report the creation of a many-atom entangled state on an OLC transition, and use it to demonstrate a Ramsey sequence with an Allan deviation below the SQL after subtraction of the local-oscillator noise. We achieve a metrological gain of
4
.
4
-
0
.
4
+
0
.
6
decibels over the SQL by using an ensemble consisting of a few hundred ytterbium-171 atoms, corresponding to a reduction of the averaging time by a factor of 2.8 ± 0.3. Our results are currently limited by the phase noise of the local oscillator and Dick noise, but demonstrate the possible performance improvement in state-of-the-art OLCs
1
–
4
through the use of entanglement. This will enable further advances in timekeeping precision and accuracy, with many scientific and technological applications, including precision tests of the fundamental laws of physics
21
–
23
, geodesy
24
–
26
and gravitational-wave detection
27
.
A many-atom state of trapped
171
Yb atoms that are entangled on an optical atomic-clock transition overcomes the standard quantum limit, providing a proof-of-principle demonstration towards entanglement-based optical atomic clocks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33328668</pmid><doi>10.1038/s41586-020-3006-1</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6841-5905</orcidid><orcidid>https://orcid.org/0000-0002-7713-6235</orcidid><orcidid>https://orcid.org/0000-0001-5193-2711</orcidid><orcidid>https://orcid.org/0000-0002-9786-0538</orcidid><orcidid>https://orcid.org/0000-0001-8353-8903</orcidid><orcidid>https://orcid.org/0000-0002-3741-1765</orcidid><orcidid>https://orcid.org/0000-0001-7294-8878</orcidid><orcidid>https://orcid.org/0000-0003-4348-9910</orcidid><orcidid>https://orcid.org/0000-0003-0981-9429</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-12, Vol.588 (7838), p.414-418 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2470903618 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 140/125 639/766/36/1121 639/766/36/1125 639/766/483/1255 Atomic clocks Clocks & watches Decibels Entangled states Gravitational waves Gravity Humanities and Social Sciences Interrogation Lasers multidisciplinary Noise Noise measurement Optical lattices Properties Quantum entanglement Quantum theory Query languages Questioning Science Science (multidisciplinary) Stability Subtraction Ytterbium |
title | Entanglement on an optical atomic-clock transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20on%20an%20optical%20atomic-clock%20transition&rft.jtitle=Nature%20(London)&rft.au=Pedrozo-Pe%C3%B1afiel,%20Edwin&rft.date=2020-12-17&rft.volume=588&rft.issue=7838&rft.spage=414&rft.epage=418&rft.pages=414-418&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-3006-1&rft_dat=%3Cgale_proqu%3EA649636869%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475948466&rft_id=info:pmid/33328668&rft_galeid=A649636869&rfr_iscdi=true |