Subdynamics of fluctuations in an equilibrium classical many-particle system and generalized linear Boltzmann and Landau equations
Exact completely closed homogeneous generalized master equations (GMEs) governing the evolution in time of equilibrium two-time correlation functions for dynamic variables of a subsystem of s particles (s
Gespeichert in:
Veröffentlicht in: | Physical review. E 2020-11, Vol.102 (5-1), p.052136-052136, Article 052136 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 052136 |
---|---|
container_issue | 5-1 |
container_start_page | 052136 |
container_title | Physical review. E |
container_volume | 102 |
creator | Los, Victor F |
description | Exact completely closed homogeneous generalized master equations (GMEs) governing the evolution in time of equilibrium two-time correlation functions for dynamic variables of a subsystem of s particles (s |
doi_str_mv | 10.1103/PhysRevE.102.052136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2470900091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470900091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-17b13556f30e2ee0eee1a32db34e2ca3a40a82cc40e33c76afef74481c1c8223</originalsourceid><addsrcrecordid>eNo9kE1r20AQhpfSkoQ0vyAQ9tiLnNkdybKPrclHwZDS-i5Gq1GzZbWyd7UF-dhfHrmOfZkZhvcDHiFuFcyUArz_8TrGn_z3YaZAz6DQCucfxJXOS8gACvx4vvPiUtzE-AcA1ByWpdIX4hIRdakBrsS_X6luRk-dNVH2rWxdMkOiwfY-Suslecm7ZJ2tg02dNI5itIac7MiP2ZbCYI1jGcc4cDepG_mbPQdyds-NdNYzBfmtd8N-Mvj_gvU0KB1ijzWfxaeWXOSb930tNo8Pm9Vztn55-r76us4MQjFkqqwVFsW8RWDNDMysCHVTY87aEFIOtNDG5MCIppxTy22Z5wtllFlojdfiyzF2G_pd4jhUnY2GnSPPfYrVgddyorRUkxSPUhP6GAO31TbYjsJYKagO-KsT_umhqyP-yXX3XpDqjpuz5wQb3wA_SYVT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470900091</pqid></control><display><type>article</type><title>Subdynamics of fluctuations in an equilibrium classical many-particle system and generalized linear Boltzmann and Landau equations</title><source>American Physical Society Journals</source><creator>Los, Victor F</creator><creatorcontrib>Los, Victor F</creatorcontrib><description>Exact completely closed homogeneous generalized master equations (GMEs) governing the evolution in time of equilibrium two-time correlation functions for dynamic variables of a subsystem of s particles (s<N) selected from N≫1 particles of a classical many-body system are obtained. These time-convolution and time-convolutionless GMEs differ from the known GMEs (e.g., Nakajima-Zwanzig GME) by the absence of inhomogeneous terms containing correlations between all N particles at the initial moment of time and preventing the closed description of s-particle subsystem evolution. Closed homogeneous GMEs describing the subdynamics of fluctuations are obtained by applying a special projection operator to the Liouville-type equation governing the dynamics of the correlation function with the related to the Gibbs distribution initial state, which is more natural than the conventional factorized initial state. No common approximation, like the "molecular chaos," is needed. In the linear approximation in the particles' density, the linear generalized Boltzmann equation accounting for initial correlations and valid at all timescales is obtained. This equation for a weak interparticle interaction converts into the generalized linear Landau equation in which the initial correlations are also accounted for. The connection of these equations to the nonlinear Boltzmann and Landau equations is discussed. The same approach is applicable to studying the kinetics of the conventional reduced s-particle distribution functions for a classical N-particle system driven from an equilibrium state by an external force.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.102.052136</identifier><identifier>PMID: 33327200</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2020-11, Vol.102 (5-1), p.052136-052136, Article 052136</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-17b13556f30e2ee0eee1a32db34e2ca3a40a82cc40e33c76afef74481c1c8223</citedby><cites>FETCH-LOGICAL-c305t-17b13556f30e2ee0eee1a32db34e2ca3a40a82cc40e33c76afef74481c1c8223</cites><orcidid>0000-0001-5292-1483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33327200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Los, Victor F</creatorcontrib><title>Subdynamics of fluctuations in an equilibrium classical many-particle system and generalized linear Boltzmann and Landau equations</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Exact completely closed homogeneous generalized master equations (GMEs) governing the evolution in time of equilibrium two-time correlation functions for dynamic variables of a subsystem of s particles (s<N) selected from N≫1 particles of a classical many-body system are obtained. These time-convolution and time-convolutionless GMEs differ from the known GMEs (e.g., Nakajima-Zwanzig GME) by the absence of inhomogeneous terms containing correlations between all N particles at the initial moment of time and preventing the closed description of s-particle subsystem evolution. Closed homogeneous GMEs describing the subdynamics of fluctuations are obtained by applying a special projection operator to the Liouville-type equation governing the dynamics of the correlation function with the related to the Gibbs distribution initial state, which is more natural than the conventional factorized initial state. No common approximation, like the "molecular chaos," is needed. In the linear approximation in the particles' density, the linear generalized Boltzmann equation accounting for initial correlations and valid at all timescales is obtained. This equation for a weak interparticle interaction converts into the generalized linear Landau equation in which the initial correlations are also accounted for. The connection of these equations to the nonlinear Boltzmann and Landau equations is discussed. The same approach is applicable to studying the kinetics of the conventional reduced s-particle distribution functions for a classical N-particle system driven from an equilibrium state by an external force.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1r20AQhpfSkoQ0vyAQ9tiLnNkdybKPrclHwZDS-i5Gq1GzZbWyd7UF-dhfHrmOfZkZhvcDHiFuFcyUArz_8TrGn_z3YaZAz6DQCucfxJXOS8gACvx4vvPiUtzE-AcA1ByWpdIX4hIRdakBrsS_X6luRk-dNVH2rWxdMkOiwfY-Suslecm7ZJ2tg02dNI5itIac7MiP2ZbCYI1jGcc4cDepG_mbPQdyds-NdNYzBfmtd8N-Mvj_gvU0KB1ijzWfxaeWXOSb930tNo8Pm9Vztn55-r76us4MQjFkqqwVFsW8RWDNDMysCHVTY87aEFIOtNDG5MCIppxTy22Z5wtllFlojdfiyzF2G_pd4jhUnY2GnSPPfYrVgddyorRUkxSPUhP6GAO31TbYjsJYKagO-KsT_umhqyP-yXX3XpDqjpuz5wQb3wA_SYVT</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Los, Victor F</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5292-1483</orcidid></search><sort><creationdate>202011</creationdate><title>Subdynamics of fluctuations in an equilibrium classical many-particle system and generalized linear Boltzmann and Landau equations</title><author>Los, Victor F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-17b13556f30e2ee0eee1a32db34e2ca3a40a82cc40e33c76afef74481c1c8223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Los, Victor F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Los, Victor F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subdynamics of fluctuations in an equilibrium classical many-particle system and generalized linear Boltzmann and Landau equations</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2020-11</date><risdate>2020</risdate><volume>102</volume><issue>5-1</issue><spage>052136</spage><epage>052136</epage><pages>052136-052136</pages><artnum>052136</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Exact completely closed homogeneous generalized master equations (GMEs) governing the evolution in time of equilibrium two-time correlation functions for dynamic variables of a subsystem of s particles (s<N) selected from N≫1 particles of a classical many-body system are obtained. These time-convolution and time-convolutionless GMEs differ from the known GMEs (e.g., Nakajima-Zwanzig GME) by the absence of inhomogeneous terms containing correlations between all N particles at the initial moment of time and preventing the closed description of s-particle subsystem evolution. Closed homogeneous GMEs describing the subdynamics of fluctuations are obtained by applying a special projection operator to the Liouville-type equation governing the dynamics of the correlation function with the related to the Gibbs distribution initial state, which is more natural than the conventional factorized initial state. No common approximation, like the "molecular chaos," is needed. In the linear approximation in the particles' density, the linear generalized Boltzmann equation accounting for initial correlations and valid at all timescales is obtained. This equation for a weak interparticle interaction converts into the generalized linear Landau equation in which the initial correlations are also accounted for. The connection of these equations to the nonlinear Boltzmann and Landau equations is discussed. The same approach is applicable to studying the kinetics of the conventional reduced s-particle distribution functions for a classical N-particle system driven from an equilibrium state by an external force.</abstract><cop>United States</cop><pmid>33327200</pmid><doi>10.1103/PhysRevE.102.052136</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5292-1483</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2020-11, Vol.102 (5-1), p.052136-052136, Article 052136 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_2470900091 |
source | American Physical Society Journals |
title | Subdynamics of fluctuations in an equilibrium classical many-particle system and generalized linear Boltzmann and Landau equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subdynamics%20of%20fluctuations%20in%20an%20equilibrium%20classical%20many-particle%20system%20and%20generalized%20linear%20Boltzmann%20and%20Landau%20equations&rft.jtitle=Physical%20review.%20E&rft.au=Los,%20Victor%20F&rft.date=2020-11&rft.volume=102&rft.issue=5-1&rft.spage=052136&rft.epage=052136&rft.pages=052136-052136&rft.artnum=052136&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.102.052136&rft_dat=%3Cproquest_cross%3E2470900091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470900091&rft_id=info:pmid/33327200&rfr_iscdi=true |