Balancing glucose and oxygen uptake rates to enable high amorpha‐4,11‐diene production in Escherichia coli via the methylerythritol phosphate pathway
Amorpha‐4,11‐diene (AMD4,11) is a precursor to artemisinin, a potent antimalarial drug that is traditionally extracted from the shrubs of Artemisia annua. Despite significant prior efforts to produce artemisinin and its precursors through biotechnology, there remains a dire need for more efficient b...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2021-03, Vol.118 (3), p.1317-1329 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1329 |
---|---|
container_issue | 3 |
container_start_page | 1317 |
container_title | Biotechnology and bioengineering |
container_volume | 118 |
creator | Patil, Vikas Santos, Christine N. S. Ajikumar, Parayil K. Sarria, Stephen Takors, Ralf |
description | Amorpha‐4,11‐diene (AMD4,11) is a precursor to artemisinin, a potent antimalarial drug that is traditionally extracted from the shrubs of Artemisia annua. Despite significant prior efforts to produce artemisinin and its precursors through biotechnology, there remains a dire need for more efficient biosynthetic routes for its production. Here, we describe the optimization of key process conditions for an Escherichia coli strain producing AMD4,11 via the native methylerythritol phosphate (MEP) pathway. By studying the interplay between glucose uptake rates and oxygen demand, we were able to identify optimal conditions for increasing carbon flux through the MEP pathway by manipulating the availability of NADPH required for terpenoid production. Installation of an optimal qO2/qglucose led to a 6.7‐fold increase in product titers and a 6.5‐fold increase in carbon yield.
We have established that increase in q02/qGluocse negatively impacts MEP pathway flux and hence amorpha‐4,11‐diene (AMD4,11) productivities. Increase in glucose uptake rates leads corresponding rise in oxygen uptake rates, while increasing flux through PDH into the TCA cycle. This shift in carbon flux had the effect of reducing the amount of pyruvate for the MEP pathway. Simultaneously, higher oxygen uptake rates led to a higher utilization of NADH which was partially provided by the transhydrogenase‐mediated conversion of NADPH to NADH. Lower overall availability of NADPH also had the effect of reducing the flux through the MEP pathway and towards amorpha‐4,11‐diene production. |
doi_str_mv | 10.1002/bit.27655 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2470899626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2490487151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4255-646e835ce4bb04bbe9035c783a5f6565dde2258a8b331ad1885b379ca80b1773</originalsourceid><addsrcrecordid>eNp1kcFuFSEUhonR2Gt14QsYEjeaOC0wA8MsbVO1SRM3dz9hmHMvVAZGYFpn5yN029fzSURvdWEiCTmc5MuXc_gReknJCSWEnQ42n7BWcP4IbSjp2oqwjjxGG0KIqGresSP0LKXr0rZSiKfoqC6HCiE36P5MOeW19Xu8d4sOCbDyIw7f1j14vMxZfQEcVYaEc8Dg1eAAG7s3WE0hzkb9-H7XvKO0lNGCBzzHMC462-Cx9fgiaQPRamMV1sFZfFMe2QCeIJvVQVyziTYHh2cTUtHlYlDZ3Kr1OXqyUy7Bi4d6jLYfLrbnn6qrzx8vz99fVbphnFeiESBrrqEZBlIudKR0rawV3wku-DgCY1wqOZSV1Uil5EPddlpJMtC2rY_Rm4O2DP51gZT7ySYNrvwKhCX1rGmJ7DrBREFf_4NehyX6MlyhOtLIlnJaqLcHSseQUoRdP0c7qbj2lPS_4upLXP3vuAr76sG4DBOMf8k_-RTg9ADcWgfr_0392eX2oPwJ5_-iXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2490487151</pqid></control><display><type>article</type><title>Balancing glucose and oxygen uptake rates to enable high amorpha‐4,11‐diene production in Escherichia coli via the methylerythritol phosphate pathway</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Patil, Vikas ; Santos, Christine N. S. ; Ajikumar, Parayil K. ; Sarria, Stephen ; Takors, Ralf</creator><creatorcontrib>Patil, Vikas ; Santos, Christine N. S. ; Ajikumar, Parayil K. ; Sarria, Stephen ; Takors, Ralf</creatorcontrib><description>Amorpha‐4,11‐diene (AMD4,11) is a precursor to artemisinin, a potent antimalarial drug that is traditionally extracted from the shrubs of Artemisia annua. Despite significant prior efforts to produce artemisinin and its precursors through biotechnology, there remains a dire need for more efficient biosynthetic routes for its production. Here, we describe the optimization of key process conditions for an Escherichia coli strain producing AMD4,11 via the native methylerythritol phosphate (MEP) pathway. By studying the interplay between glucose uptake rates and oxygen demand, we were able to identify optimal conditions for increasing carbon flux through the MEP pathway by manipulating the availability of NADPH required for terpenoid production. Installation of an optimal qO2/qglucose led to a 6.7‐fold increase in product titers and a 6.5‐fold increase in carbon yield.
We have established that increase in q02/qGluocse negatively impacts MEP pathway flux and hence amorpha‐4,11‐diene (AMD4,11) productivities. Increase in glucose uptake rates leads corresponding rise in oxygen uptake rates, while increasing flux through PDH into the TCA cycle. This shift in carbon flux had the effect of reducing the amount of pyruvate for the MEP pathway. Simultaneously, higher oxygen uptake rates led to a higher utilization of NADH which was partially provided by the transhydrogenase‐mediated conversion of NADPH to NADH. Lower overall availability of NADPH also had the effect of reducing the flux through the MEP pathway and towards amorpha‐4,11‐diene production.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.27655</identifier><identifier>PMID: 33331668</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>amorpha‐4,11‐diene ; Antimalarials - metabolism ; Artemisinin ; Biotechnology ; Carbon ; E coli ; Erythritol - analogs & derivatives ; Erythritol - metabolism ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; FBA ; Glucose ; Glucose - metabolism ; MEP pathway ; NADPH ; Optimization ; Oxygen ; Oxygen - metabolism ; Oxygen Consumption ; Oxygen demand ; Oxygen uptake ; Polycyclic Sesquiterpenes - metabolism ; Precursors ; Shrubs ; Sugar Phosphates - metabolism ; terpenoid</subject><ispartof>Biotechnology and bioengineering, 2021-03, Vol.118 (3), p.1317-1329</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC.</rights><rights>2020 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4255-646e835ce4bb04bbe9035c783a5f6565dde2258a8b331ad1885b379ca80b1773</citedby><cites>FETCH-LOGICAL-c4255-646e835ce4bb04bbe9035c783a5f6565dde2258a8b331ad1885b379ca80b1773</cites><orcidid>0000-0001-5837-6906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.27655$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.27655$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33331668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patil, Vikas</creatorcontrib><creatorcontrib>Santos, Christine N. S.</creatorcontrib><creatorcontrib>Ajikumar, Parayil K.</creatorcontrib><creatorcontrib>Sarria, Stephen</creatorcontrib><creatorcontrib>Takors, Ralf</creatorcontrib><title>Balancing glucose and oxygen uptake rates to enable high amorpha‐4,11‐diene production in Escherichia coli via the methylerythritol phosphate pathway</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>Amorpha‐4,11‐diene (AMD4,11) is a precursor to artemisinin, a potent antimalarial drug that is traditionally extracted from the shrubs of Artemisia annua. Despite significant prior efforts to produce artemisinin and its precursors through biotechnology, there remains a dire need for more efficient biosynthetic routes for its production. Here, we describe the optimization of key process conditions for an Escherichia coli strain producing AMD4,11 via the native methylerythritol phosphate (MEP) pathway. By studying the interplay between glucose uptake rates and oxygen demand, we were able to identify optimal conditions for increasing carbon flux through the MEP pathway by manipulating the availability of NADPH required for terpenoid production. Installation of an optimal qO2/qglucose led to a 6.7‐fold increase in product titers and a 6.5‐fold increase in carbon yield.
We have established that increase in q02/qGluocse negatively impacts MEP pathway flux and hence amorpha‐4,11‐diene (AMD4,11) productivities. Increase in glucose uptake rates leads corresponding rise in oxygen uptake rates, while increasing flux through PDH into the TCA cycle. This shift in carbon flux had the effect of reducing the amount of pyruvate for the MEP pathway. Simultaneously, higher oxygen uptake rates led to a higher utilization of NADH which was partially provided by the transhydrogenase‐mediated conversion of NADPH to NADH. Lower overall availability of NADPH also had the effect of reducing the flux through the MEP pathway and towards amorpha‐4,11‐diene production.</description><subject>amorpha‐4,11‐diene</subject><subject>Antimalarials - metabolism</subject><subject>Artemisinin</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>E coli</subject><subject>Erythritol - analogs & derivatives</subject><subject>Erythritol - metabolism</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>FBA</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>MEP pathway</subject><subject>NADPH</subject><subject>Optimization</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen Consumption</subject><subject>Oxygen demand</subject><subject>Oxygen uptake</subject><subject>Polycyclic Sesquiterpenes - metabolism</subject><subject>Precursors</subject><subject>Shrubs</subject><subject>Sugar Phosphates - metabolism</subject><subject>terpenoid</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcFuFSEUhonR2Gt14QsYEjeaOC0wA8MsbVO1SRM3dz9hmHMvVAZGYFpn5yN029fzSURvdWEiCTmc5MuXc_gReknJCSWEnQ42n7BWcP4IbSjp2oqwjjxGG0KIqGresSP0LKXr0rZSiKfoqC6HCiE36P5MOeW19Xu8d4sOCbDyIw7f1j14vMxZfQEcVYaEc8Dg1eAAG7s3WE0hzkb9-H7XvKO0lNGCBzzHMC462-Cx9fgiaQPRamMV1sFZfFMe2QCeIJvVQVyziTYHh2cTUtHlYlDZ3Kr1OXqyUy7Bi4d6jLYfLrbnn6qrzx8vz99fVbphnFeiESBrrqEZBlIudKR0rawV3wku-DgCY1wqOZSV1Uil5EPddlpJMtC2rY_Rm4O2DP51gZT7ySYNrvwKhCX1rGmJ7DrBREFf_4NehyX6MlyhOtLIlnJaqLcHSseQUoRdP0c7qbj2lPS_4upLXP3vuAr76sG4DBOMf8k_-RTg9ADcWgfr_0392eX2oPwJ5_-iXw</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Patil, Vikas</creator><creator>Santos, Christine N. S.</creator><creator>Ajikumar, Parayil K.</creator><creator>Sarria, Stephen</creator><creator>Takors, Ralf</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5837-6906</orcidid></search><sort><creationdate>202103</creationdate><title>Balancing glucose and oxygen uptake rates to enable high amorpha‐4,11‐diene production in Escherichia coli via the methylerythritol phosphate pathway</title><author>Patil, Vikas ; Santos, Christine N. S. ; Ajikumar, Parayil K. ; Sarria, Stephen ; Takors, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4255-646e835ce4bb04bbe9035c783a5f6565dde2258a8b331ad1885b379ca80b1773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>amorpha‐4,11‐diene</topic><topic>Antimalarials - metabolism</topic><topic>Artemisinin</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>E coli</topic><topic>Erythritol - analogs & derivatives</topic><topic>Erythritol - metabolism</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>FBA</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>MEP pathway</topic><topic>NADPH</topic><topic>Optimization</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen Consumption</topic><topic>Oxygen demand</topic><topic>Oxygen uptake</topic><topic>Polycyclic Sesquiterpenes - metabolism</topic><topic>Precursors</topic><topic>Shrubs</topic><topic>Sugar Phosphates - metabolism</topic><topic>terpenoid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patil, Vikas</creatorcontrib><creatorcontrib>Santos, Christine N. S.</creatorcontrib><creatorcontrib>Ajikumar, Parayil K.</creatorcontrib><creatorcontrib>Sarria, Stephen</creatorcontrib><creatorcontrib>Takors, Ralf</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patil, Vikas</au><au>Santos, Christine N. S.</au><au>Ajikumar, Parayil K.</au><au>Sarria, Stephen</au><au>Takors, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balancing glucose and oxygen uptake rates to enable high amorpha‐4,11‐diene production in Escherichia coli via the methylerythritol phosphate pathway</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2021-03</date><risdate>2021</risdate><volume>118</volume><issue>3</issue><spage>1317</spage><epage>1329</epage><pages>1317-1329</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>Amorpha‐4,11‐diene (AMD4,11) is a precursor to artemisinin, a potent antimalarial drug that is traditionally extracted from the shrubs of Artemisia annua. Despite significant prior efforts to produce artemisinin and its precursors through biotechnology, there remains a dire need for more efficient biosynthetic routes for its production. Here, we describe the optimization of key process conditions for an Escherichia coli strain producing AMD4,11 via the native methylerythritol phosphate (MEP) pathway. By studying the interplay between glucose uptake rates and oxygen demand, we were able to identify optimal conditions for increasing carbon flux through the MEP pathway by manipulating the availability of NADPH required for terpenoid production. Installation of an optimal qO2/qglucose led to a 6.7‐fold increase in product titers and a 6.5‐fold increase in carbon yield.
We have established that increase in q02/qGluocse negatively impacts MEP pathway flux and hence amorpha‐4,11‐diene (AMD4,11) productivities. Increase in glucose uptake rates leads corresponding rise in oxygen uptake rates, while increasing flux through PDH into the TCA cycle. This shift in carbon flux had the effect of reducing the amount of pyruvate for the MEP pathway. Simultaneously, higher oxygen uptake rates led to a higher utilization of NADH which was partially provided by the transhydrogenase‐mediated conversion of NADPH to NADH. Lower overall availability of NADPH also had the effect of reducing the flux through the MEP pathway and towards amorpha‐4,11‐diene production.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33331668</pmid><doi>10.1002/bit.27655</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5837-6906</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2021-03, Vol.118 (3), p.1317-1329 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_2470899626 |
source | MEDLINE; Access via Wiley Online Library |
subjects | amorpha‐4,11‐diene Antimalarials - metabolism Artemisinin Biotechnology Carbon E coli Erythritol - analogs & derivatives Erythritol - metabolism Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism FBA Glucose Glucose - metabolism MEP pathway NADPH Optimization Oxygen Oxygen - metabolism Oxygen Consumption Oxygen demand Oxygen uptake Polycyclic Sesquiterpenes - metabolism Precursors Shrubs Sugar Phosphates - metabolism terpenoid |
title | Balancing glucose and oxygen uptake rates to enable high amorpha‐4,11‐diene production in Escherichia coli via the methylerythritol phosphate pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balancing%20glucose%20and%20oxygen%20uptake%20rates%20to%20enable%20high%20amorpha%E2%80%904,11%E2%80%90diene%20production%20in%20Escherichia%20coli%20via%20the%20methylerythritol%20phosphate%20pathway&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Patil,%20Vikas&rft.date=2021-03&rft.volume=118&rft.issue=3&rft.spage=1317&rft.epage=1329&rft.pages=1317-1329&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.27655&rft_dat=%3Cproquest_cross%3E2490487151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2490487151&rft_id=info:pmid/33331668&rfr_iscdi=true |