Highly Multiplexed Targeted Proteomics Acquisition on a TIMS-QTOF
Targeted proteomics allows the highly sensitive detection of specific peptides and proteins in complex biological samples. Here, we describe a methodology for targeted peptide quantification using a trapped ion mobility quadrupole time-of-flight mass spectrometer (timsTOF Pro). The prm-PASEF method...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2021-01, Vol.93 (3), p.1383-1392 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1392 |
---|---|
container_issue | 3 |
container_start_page | 1383 |
container_title | Analytical chemistry (Washington) |
container_volume | 93 |
creator | Lesur, Antoine Schmit, Pierre-Olivier Bernardin, François Letellier, Elisabeth Brehmer, Sven Decker, Jens Dittmar, Gunnar |
description | Targeted proteomics allows the highly sensitive detection of specific peptides and proteins in complex biological samples. Here, we describe a methodology for targeted peptide quantification using a trapped ion mobility quadrupole time-of-flight mass spectrometer (timsTOF Pro). The prm-PASEF method exploits the multiplexing capability provided by the trapped ion mobility separation, allowing more than 200 peptides to be monitored over a 30 min liquid chromatography separation. Compared to conventional parallel reaction monitoring (PRM), precursor ions are accumulated in the trapped ion mobility spectrometry (TIMS) cells and separated according to their shape and charge before eluting into the quadrupole time-of-flight (QTOF) part of the mass spectrometer. The ion mobility trap allows measuring up to six peptides from a single 100 ms ion mobility separation with the current setup. Using these improved mass spectrometric capabilities, we detected and quantified 216 isotope-labeled synthetic peptides (AQUA peptides) spiked in HeLa human cell extract with limits of quantification of 17.2 amol for some peptides. The acquisition method is highly reproducible between injections and enables accurate quantification in biological samples, as demonstrated by quantifying KRas, NRas, and HRas as well as several Ras mutations in lung and colon cancer cell lines on fast 10 min gradient separations. |
doi_str_mv | 10.1021/acs.analchem.0c03180 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2470899539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483640554</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-fdf7e28652588ea91a0512f4c418059d27329feede3d639f92d586249d079a0d3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk7_gUjBG286T77a5HKIc4ONKc7rEJt0y2jXrWnB_Xsz9nHhheFAzsXzvgkPQvcY-hgIftaZ7-u1LrKlLfuQAcUCLlAXcwJxIgS5RF0AoDFJATroxvsVAMaAk2vUoeHgNMFdNBi5xbLYRdO2aNymsD_WRHNdL2wTlve6amxVusxHg2zbOu8aV62jMDqaj6ef8cd8NrxFV7kuvL073j30NXydv4ziyext_DKYxJox0sS5yVNLRMIJF8JqiTVwTHKWsfBvLg1JKZG5tcZSk1CZS2K4SAiTBlKpwdAeejr0bupq21rfqNL5zBaFXtuq9YqwFISUnMqAPv5BV1VbB1d7StCEAecsUOxAZXXlfW1ztaldqeudwqD2ilVQrE6K1VFxiD0cy9vv0ppz6OQ0AHAA9vHzw_92_gKBZIg3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483640554</pqid></control><display><type>article</type><title>Highly Multiplexed Targeted Proteomics Acquisition on a TIMS-QTOF</title><source>ACS Publications</source><source>MEDLINE</source><creator>Lesur, Antoine ; Schmit, Pierre-Olivier ; Bernardin, François ; Letellier, Elisabeth ; Brehmer, Sven ; Decker, Jens ; Dittmar, Gunnar</creator><creatorcontrib>Lesur, Antoine ; Schmit, Pierre-Olivier ; Bernardin, François ; Letellier, Elisabeth ; Brehmer, Sven ; Decker, Jens ; Dittmar, Gunnar</creatorcontrib><description>Targeted proteomics allows the highly sensitive detection of specific peptides and proteins in complex biological samples. Here, we describe a methodology for targeted peptide quantification using a trapped ion mobility quadrupole time-of-flight mass spectrometer (timsTOF Pro). The prm-PASEF method exploits the multiplexing capability provided by the trapped ion mobility separation, allowing more than 200 peptides to be monitored over a 30 min liquid chromatography separation. Compared to conventional parallel reaction monitoring (PRM), precursor ions are accumulated in the trapped ion mobility spectrometry (TIMS) cells and separated according to their shape and charge before eluting into the quadrupole time-of-flight (QTOF) part of the mass spectrometer. The ion mobility trap allows measuring up to six peptides from a single 100 ms ion mobility separation with the current setup. Using these improved mass spectrometric capabilities, we detected and quantified 216 isotope-labeled synthetic peptides (AQUA peptides) spiked in HeLa human cell extract with limits of quantification of 17.2 amol for some peptides. The acquisition method is highly reproducible between injections and enables accurate quantification in biological samples, as demonstrated by quantifying KRas, NRas, and HRas as well as several Ras mutations in lung and colon cancer cell lines on fast 10 min gradient separations.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c03180</identifier><identifier>PMID: 33331761</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Biological properties ; Biological samples ; Carbon Isotopes ; Chemistry ; Colon ; Colon cancer ; Colorectal cancer ; HeLa Cells ; Humans ; Ion Mobility Spectrometry ; Ionic mobility ; Ions ; Liquid chromatography ; Lung cancer ; Mobility ; Multiplexing ; Mutation ; Nitrogen Isotopes ; Peptides ; Peptides - analysis ; Peptides - chemical synthesis ; Proteomics ; Quadrupoles ; Separation ; Spectrometry ; Synthetic peptides ; Target acquisition ; Time Factors ; Tumor cell lines</subject><ispartof>Analytical chemistry (Washington), 2021-01, Vol.93 (3), p.1383-1392</ispartof><rights>2020 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 26, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-fdf7e28652588ea91a0512f4c418059d27329feede3d639f92d586249d079a0d3</citedby><cites>FETCH-LOGICAL-a442t-fdf7e28652588ea91a0512f4c418059d27329feede3d639f92d586249d079a0d3</cites><orcidid>0000-0003-3647-8623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c03180$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c03180$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33331761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lesur, Antoine</creatorcontrib><creatorcontrib>Schmit, Pierre-Olivier</creatorcontrib><creatorcontrib>Bernardin, François</creatorcontrib><creatorcontrib>Letellier, Elisabeth</creatorcontrib><creatorcontrib>Brehmer, Sven</creatorcontrib><creatorcontrib>Decker, Jens</creatorcontrib><creatorcontrib>Dittmar, Gunnar</creatorcontrib><title>Highly Multiplexed Targeted Proteomics Acquisition on a TIMS-QTOF</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Targeted proteomics allows the highly sensitive detection of specific peptides and proteins in complex biological samples. Here, we describe a methodology for targeted peptide quantification using a trapped ion mobility quadrupole time-of-flight mass spectrometer (timsTOF Pro). The prm-PASEF method exploits the multiplexing capability provided by the trapped ion mobility separation, allowing more than 200 peptides to be monitored over a 30 min liquid chromatography separation. Compared to conventional parallel reaction monitoring (PRM), precursor ions are accumulated in the trapped ion mobility spectrometry (TIMS) cells and separated according to their shape and charge before eluting into the quadrupole time-of-flight (QTOF) part of the mass spectrometer. The ion mobility trap allows measuring up to six peptides from a single 100 ms ion mobility separation with the current setup. Using these improved mass spectrometric capabilities, we detected and quantified 216 isotope-labeled synthetic peptides (AQUA peptides) spiked in HeLa human cell extract with limits of quantification of 17.2 amol for some peptides. The acquisition method is highly reproducible between injections and enables accurate quantification in biological samples, as demonstrated by quantifying KRas, NRas, and HRas as well as several Ras mutations in lung and colon cancer cell lines on fast 10 min gradient separations.</description><subject>Analytical chemistry</subject><subject>Biological properties</subject><subject>Biological samples</subject><subject>Carbon Isotopes</subject><subject>Chemistry</subject><subject>Colon</subject><subject>Colon cancer</subject><subject>Colorectal cancer</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Ion Mobility Spectrometry</subject><subject>Ionic mobility</subject><subject>Ions</subject><subject>Liquid chromatography</subject><subject>Lung cancer</subject><subject>Mobility</subject><subject>Multiplexing</subject><subject>Mutation</subject><subject>Nitrogen Isotopes</subject><subject>Peptides</subject><subject>Peptides - analysis</subject><subject>Peptides - chemical synthesis</subject><subject>Proteomics</subject><subject>Quadrupoles</subject><subject>Separation</subject><subject>Spectrometry</subject><subject>Synthetic peptides</subject><subject>Target acquisition</subject><subject>Time Factors</subject><subject>Tumor cell lines</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1LwzAUhoMobk7_gUjBG286T77a5HKIc4ONKc7rEJt0y2jXrWnB_Xsz9nHhheFAzsXzvgkPQvcY-hgIftaZ7-u1LrKlLfuQAcUCLlAXcwJxIgS5RF0AoDFJATroxvsVAMaAk2vUoeHgNMFdNBi5xbLYRdO2aNymsD_WRHNdL2wTlve6amxVusxHg2zbOu8aV62jMDqaj6ef8cd8NrxFV7kuvL073j30NXydv4ziyext_DKYxJox0sS5yVNLRMIJF8JqiTVwTHKWsfBvLg1JKZG5tcZSk1CZS2K4SAiTBlKpwdAeejr0bupq21rfqNL5zBaFXtuq9YqwFISUnMqAPv5BV1VbB1d7StCEAecsUOxAZXXlfW1ztaldqeudwqD2ilVQrE6K1VFxiD0cy9vv0ppz6OQ0AHAA9vHzw_92_gKBZIg3</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Lesur, Antoine</creator><creator>Schmit, Pierre-Olivier</creator><creator>Bernardin, François</creator><creator>Letellier, Elisabeth</creator><creator>Brehmer, Sven</creator><creator>Decker, Jens</creator><creator>Dittmar, Gunnar</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3647-8623</orcidid></search><sort><creationdate>20210126</creationdate><title>Highly Multiplexed Targeted Proteomics Acquisition on a TIMS-QTOF</title><author>Lesur, Antoine ; Schmit, Pierre-Olivier ; Bernardin, François ; Letellier, Elisabeth ; Brehmer, Sven ; Decker, Jens ; Dittmar, Gunnar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-fdf7e28652588ea91a0512f4c418059d27329feede3d639f92d586249d079a0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical chemistry</topic><topic>Biological properties</topic><topic>Biological samples</topic><topic>Carbon Isotopes</topic><topic>Chemistry</topic><topic>Colon</topic><topic>Colon cancer</topic><topic>Colorectal cancer</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Ion Mobility Spectrometry</topic><topic>Ionic mobility</topic><topic>Ions</topic><topic>Liquid chromatography</topic><topic>Lung cancer</topic><topic>Mobility</topic><topic>Multiplexing</topic><topic>Mutation</topic><topic>Nitrogen Isotopes</topic><topic>Peptides</topic><topic>Peptides - analysis</topic><topic>Peptides - chemical synthesis</topic><topic>Proteomics</topic><topic>Quadrupoles</topic><topic>Separation</topic><topic>Spectrometry</topic><topic>Synthetic peptides</topic><topic>Target acquisition</topic><topic>Time Factors</topic><topic>Tumor cell lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lesur, Antoine</creatorcontrib><creatorcontrib>Schmit, Pierre-Olivier</creatorcontrib><creatorcontrib>Bernardin, François</creatorcontrib><creatorcontrib>Letellier, Elisabeth</creatorcontrib><creatorcontrib>Brehmer, Sven</creatorcontrib><creatorcontrib>Decker, Jens</creatorcontrib><creatorcontrib>Dittmar, Gunnar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lesur, Antoine</au><au>Schmit, Pierre-Olivier</au><au>Bernardin, François</au><au>Letellier, Elisabeth</au><au>Brehmer, Sven</au><au>Decker, Jens</au><au>Dittmar, Gunnar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Multiplexed Targeted Proteomics Acquisition on a TIMS-QTOF</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2021-01-26</date><risdate>2021</risdate><volume>93</volume><issue>3</issue><spage>1383</spage><epage>1392</epage><pages>1383-1392</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Targeted proteomics allows the highly sensitive detection of specific peptides and proteins in complex biological samples. Here, we describe a methodology for targeted peptide quantification using a trapped ion mobility quadrupole time-of-flight mass spectrometer (timsTOF Pro). The prm-PASEF method exploits the multiplexing capability provided by the trapped ion mobility separation, allowing more than 200 peptides to be monitored over a 30 min liquid chromatography separation. Compared to conventional parallel reaction monitoring (PRM), precursor ions are accumulated in the trapped ion mobility spectrometry (TIMS) cells and separated according to their shape and charge before eluting into the quadrupole time-of-flight (QTOF) part of the mass spectrometer. The ion mobility trap allows measuring up to six peptides from a single 100 ms ion mobility separation with the current setup. Using these improved mass spectrometric capabilities, we detected and quantified 216 isotope-labeled synthetic peptides (AQUA peptides) spiked in HeLa human cell extract with limits of quantification of 17.2 amol for some peptides. The acquisition method is highly reproducible between injections and enables accurate quantification in biological samples, as demonstrated by quantifying KRas, NRas, and HRas as well as several Ras mutations in lung and colon cancer cell lines on fast 10 min gradient separations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33331761</pmid><doi>10.1021/acs.analchem.0c03180</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3647-8623</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2021-01, Vol.93 (3), p.1383-1392 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2470899539 |
source | ACS Publications; MEDLINE |
subjects | Analytical chemistry Biological properties Biological samples Carbon Isotopes Chemistry Colon Colon cancer Colorectal cancer HeLa Cells Humans Ion Mobility Spectrometry Ionic mobility Ions Liquid chromatography Lung cancer Mobility Multiplexing Mutation Nitrogen Isotopes Peptides Peptides - analysis Peptides - chemical synthesis Proteomics Quadrupoles Separation Spectrometry Synthetic peptides Target acquisition Time Factors Tumor cell lines |
title | Highly Multiplexed Targeted Proteomics Acquisition on a TIMS-QTOF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Multiplexed%20Targeted%20Proteomics%20Acquisition%20on%20a%20TIMS-QTOF&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Lesur,%20Antoine&rft.date=2021-01-26&rft.volume=93&rft.issue=3&rft.spage=1383&rft.epage=1392&rft.pages=1383-1392&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c03180&rft_dat=%3Cproquest_cross%3E2483640554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483640554&rft_id=info:pmid/33331761&rfr_iscdi=true |