Combined proteomic and lipidomic studies in Pompe disease allow a better disease mechanism understanding

Pompe disease (PD) is caused by deficiency of the enzyme acid α‐glucosidase resulting in glycogen accumulation in lysosomes. Clinical symptoms include skeletal myopathy, respiratory failure, and cardiac hypertrophy. We studied plasma proteomic and lipidomic profiles in 12 PD patients compared to age...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inherited metabolic disease 2021-05, Vol.44 (3), p.705-717
Hauptverfasser: Sidorina, Anna, Catesini, Giulio, Levi Mortera, Stefano, Marzano, Valeria, Putignani, Lorenza, Boenzi, Sara, Taurisano, Roberta, Garibaldi, Matteo, Deodato, Federica, Dionisi‐Vici, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 717
container_issue 3
container_start_page 705
container_title Journal of inherited metabolic disease
container_volume 44
creator Sidorina, Anna
Catesini, Giulio
Levi Mortera, Stefano
Marzano, Valeria
Putignani, Lorenza
Boenzi, Sara
Taurisano, Roberta
Garibaldi, Matteo
Deodato, Federica
Dionisi‐Vici, Carlo
description Pompe disease (PD) is caused by deficiency of the enzyme acid α‐glucosidase resulting in glycogen accumulation in lysosomes. Clinical symptoms include skeletal myopathy, respiratory failure, and cardiac hypertrophy. We studied plasma proteomic and lipidomic profiles in 12 PD patients compared to age‐matched controls. The proteomic profiles were analyzed by nLC‐MS/MS SWATH method. Wide‐targeted lipidomic analysis was performed by LC‐IMS/MS, allowing to quantify >1100 lipid species, spanning 13 classes. Significant differences were found for 16 proteins, with four showing the most relevant changes (GPLD1, PON1, LDHB, PKM). Lipidomic analysis showed elevated levels of three phosphatidylcholines and of the free fatty acid 22:4, and reduced levels of six lysophosphatidylcholines. Up‐regulated glycolytic enzymes (LDHB and PKM) are involved in autophagy and glycogen metabolism, while down‐regulated PON1 and GPLD1 combined with lipidomic data indicate an abnormal phospholipid metabolism. Reduced GPLD1 and dysregulation of lipids with acyl‐chains characteristic of GPI‐anchor structure suggest the potential involvement of GPI‐anchor system in PD. Results of proteomic analysis displayed the involvement of multiple cellular functions affecting inflammatory, immune and antioxidant responses, autophagy, Ca2+‐homeostasis, and cell adhesion. The combined multi‐omic approach revealed new biosignatures in PD, providing novel insights in disease pathophysiology with potential future clinical application.
doi_str_mv 10.1002/jimd.12344
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2470625797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524091073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-a514343ca6490df1a031ae0dae9ef0fbd3ef63311041e2cdc212b4fe6fe062df3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl42PoAE3IhQzbW1SxnvKLrQdUibE83QNGPTMszbG6ejCxeuDufw8XH-H6FDSs4oIex85rw5o4wLsYEmVBY8Y3kuN9GEUEGzi1LKHbQb44wQUl5IuY12OOdMkpxN0Mc0-Mq1YPC8Cz0E72qsW4MbN3dmtcV-MA4idi1-CX4O2LgIOgLWTRMWWOMK-h6637OH-kO3Lno8tAa62Ceda9_30ZbVTYSD9dxDbzfXr9O77PH59n56-ZjVXBYi05IKLnitc1ESY6kmnGogRkMJltjKcLA555QSQYHVpmaUVcJCbiHlMZbvoZPRm_J8DhB75V2soWl0C2GIiokigbIoi4Qe_0FnYeja9J1ikglSUlLwRJ2OVN2FGDuwat45r7ulokR996---1er_hN8tFYOlQfzi_4UngA6AgvXwPIflXq4f7oapV-I3ZEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524091073</pqid></control><display><type>article</type><title>Combined proteomic and lipidomic studies in Pompe disease allow a better disease mechanism understanding</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Sidorina, Anna ; Catesini, Giulio ; Levi Mortera, Stefano ; Marzano, Valeria ; Putignani, Lorenza ; Boenzi, Sara ; Taurisano, Roberta ; Garibaldi, Matteo ; Deodato, Federica ; Dionisi‐Vici, Carlo</creator><creatorcontrib>Sidorina, Anna ; Catesini, Giulio ; Levi Mortera, Stefano ; Marzano, Valeria ; Putignani, Lorenza ; Boenzi, Sara ; Taurisano, Roberta ; Garibaldi, Matteo ; Deodato, Federica ; Dionisi‐Vici, Carlo</creatorcontrib><description>Pompe disease (PD) is caused by deficiency of the enzyme acid α‐glucosidase resulting in glycogen accumulation in lysosomes. Clinical symptoms include skeletal myopathy, respiratory failure, and cardiac hypertrophy. We studied plasma proteomic and lipidomic profiles in 12 PD patients compared to age‐matched controls. The proteomic profiles were analyzed by nLC‐MS/MS SWATH method. Wide‐targeted lipidomic analysis was performed by LC‐IMS/MS, allowing to quantify &gt;1100 lipid species, spanning 13 classes. Significant differences were found for 16 proteins, with four showing the most relevant changes (GPLD1, PON1, LDHB, PKM). Lipidomic analysis showed elevated levels of three phosphatidylcholines and of the free fatty acid 22:4, and reduced levels of six lysophosphatidylcholines. Up‐regulated glycolytic enzymes (LDHB and PKM) are involved in autophagy and glycogen metabolism, while down‐regulated PON1 and GPLD1 combined with lipidomic data indicate an abnormal phospholipid metabolism. Reduced GPLD1 and dysregulation of lipids with acyl‐chains characteristic of GPI‐anchor structure suggest the potential involvement of GPI‐anchor system in PD. Results of proteomic analysis displayed the involvement of multiple cellular functions affecting inflammatory, immune and antioxidant responses, autophagy, Ca2+‐homeostasis, and cell adhesion. The combined multi‐omic approach revealed new biosignatures in PD, providing novel insights in disease pathophysiology with potential future clinical application.</description><identifier>ISSN: 0141-8955</identifier><identifier>EISSN: 1573-2665</identifier><identifier>DOI: 10.1002/jimd.12344</identifier><identifier>PMID: 33325062</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adult ; Antioxidants ; Aryldialkylphosphatase - metabolism ; Autophagy ; Autophagy - physiology ; Calcium homeostasis ; Cell adhesion ; Child ; Child, Preschool ; Chromatography, Liquid ; Female ; Glycogen ; Glycogen Storage Disease Type II - metabolism ; Glycolysis ; GPLD1 ; Homeostasis ; Humans ; Hypertrophy ; Infant ; Inflammation ; Lactate Dehydrogenases - metabolism ; Lipid Metabolism ; Lipidomics - methods ; Lysosomes ; Lysosomes - metabolism ; Male ; Metabolism ; Myopathy ; Phagocytosis ; phosphatidylcholine metabolism ; Phospholipids ; Phospholipids - metabolism ; plasma lipidome ; plasma proteome ; Pompe disease ; Proteomics - methods ; Respiratory failure ; Tandem Mass Spectrometry</subject><ispartof>Journal of inherited metabolic disease, 2021-05, Vol.44 (3), p.705-717</ispartof><rights>2020 SSIEM</rights><rights>2020 SSIEM.</rights><rights>Copyright © 2021 SSIEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-a514343ca6490df1a031ae0dae9ef0fbd3ef63311041e2cdc212b4fe6fe062df3</citedby><cites>FETCH-LOGICAL-c3574-a514343ca6490df1a031ae0dae9ef0fbd3ef63311041e2cdc212b4fe6fe062df3</cites><orcidid>0000-0003-0358-7524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjimd.12344$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjimd.12344$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33325062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sidorina, Anna</creatorcontrib><creatorcontrib>Catesini, Giulio</creatorcontrib><creatorcontrib>Levi Mortera, Stefano</creatorcontrib><creatorcontrib>Marzano, Valeria</creatorcontrib><creatorcontrib>Putignani, Lorenza</creatorcontrib><creatorcontrib>Boenzi, Sara</creatorcontrib><creatorcontrib>Taurisano, Roberta</creatorcontrib><creatorcontrib>Garibaldi, Matteo</creatorcontrib><creatorcontrib>Deodato, Federica</creatorcontrib><creatorcontrib>Dionisi‐Vici, Carlo</creatorcontrib><title>Combined proteomic and lipidomic studies in Pompe disease allow a better disease mechanism understanding</title><title>Journal of inherited metabolic disease</title><addtitle>J Inherit Metab Dis</addtitle><description>Pompe disease (PD) is caused by deficiency of the enzyme acid α‐glucosidase resulting in glycogen accumulation in lysosomes. Clinical symptoms include skeletal myopathy, respiratory failure, and cardiac hypertrophy. We studied plasma proteomic and lipidomic profiles in 12 PD patients compared to age‐matched controls. The proteomic profiles were analyzed by nLC‐MS/MS SWATH method. Wide‐targeted lipidomic analysis was performed by LC‐IMS/MS, allowing to quantify &gt;1100 lipid species, spanning 13 classes. Significant differences were found for 16 proteins, with four showing the most relevant changes (GPLD1, PON1, LDHB, PKM). Lipidomic analysis showed elevated levels of three phosphatidylcholines and of the free fatty acid 22:4, and reduced levels of six lysophosphatidylcholines. Up‐regulated glycolytic enzymes (LDHB and PKM) are involved in autophagy and glycogen metabolism, while down‐regulated PON1 and GPLD1 combined with lipidomic data indicate an abnormal phospholipid metabolism. Reduced GPLD1 and dysregulation of lipids with acyl‐chains characteristic of GPI‐anchor structure suggest the potential involvement of GPI‐anchor system in PD. Results of proteomic analysis displayed the involvement of multiple cellular functions affecting inflammatory, immune and antioxidant responses, autophagy, Ca2+‐homeostasis, and cell adhesion. The combined multi‐omic approach revealed new biosignatures in PD, providing novel insights in disease pathophysiology with potential future clinical application.</description><subject>Adult</subject><subject>Antioxidants</subject><subject>Aryldialkylphosphatase - metabolism</subject><subject>Autophagy</subject><subject>Autophagy - physiology</subject><subject>Calcium homeostasis</subject><subject>Cell adhesion</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Chromatography, Liquid</subject><subject>Female</subject><subject>Glycogen</subject><subject>Glycogen Storage Disease Type II - metabolism</subject><subject>Glycolysis</subject><subject>GPLD1</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Infant</subject><subject>Inflammation</subject><subject>Lactate Dehydrogenases - metabolism</subject><subject>Lipid Metabolism</subject><subject>Lipidomics - methods</subject><subject>Lysosomes</subject><subject>Lysosomes - metabolism</subject><subject>Male</subject><subject>Metabolism</subject><subject>Myopathy</subject><subject>Phagocytosis</subject><subject>phosphatidylcholine metabolism</subject><subject>Phospholipids</subject><subject>Phospholipids - metabolism</subject><subject>plasma lipidome</subject><subject>plasma proteome</subject><subject>Pompe disease</subject><subject>Proteomics - methods</subject><subject>Respiratory failure</subject><subject>Tandem Mass Spectrometry</subject><issn>0141-8955</issn><issn>1573-2665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMoOl42PoAE3IhQzbW1SxnvKLrQdUibE83QNGPTMszbG6ejCxeuDufw8XH-H6FDSs4oIex85rw5o4wLsYEmVBY8Y3kuN9GEUEGzi1LKHbQb44wQUl5IuY12OOdMkpxN0Mc0-Mq1YPC8Cz0E72qsW4MbN3dmtcV-MA4idi1-CX4O2LgIOgLWTRMWWOMK-h6637OH-kO3Lno8tAa62Ceda9_30ZbVTYSD9dxDbzfXr9O77PH59n56-ZjVXBYi05IKLnitc1ESY6kmnGogRkMJltjKcLA555QSQYHVpmaUVcJCbiHlMZbvoZPRm_J8DhB75V2soWl0C2GIiokigbIoi4Qe_0FnYeja9J1ikglSUlLwRJ2OVN2FGDuwat45r7ulokR996---1er_hN8tFYOlQfzi_4UngA6AgvXwPIflXq4f7oapV-I3ZEQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Sidorina, Anna</creator><creator>Catesini, Giulio</creator><creator>Levi Mortera, Stefano</creator><creator>Marzano, Valeria</creator><creator>Putignani, Lorenza</creator><creator>Boenzi, Sara</creator><creator>Taurisano, Roberta</creator><creator>Garibaldi, Matteo</creator><creator>Deodato, Federica</creator><creator>Dionisi‐Vici, Carlo</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0358-7524</orcidid></search><sort><creationdate>202105</creationdate><title>Combined proteomic and lipidomic studies in Pompe disease allow a better disease mechanism understanding</title><author>Sidorina, Anna ; Catesini, Giulio ; Levi Mortera, Stefano ; Marzano, Valeria ; Putignani, Lorenza ; Boenzi, Sara ; Taurisano, Roberta ; Garibaldi, Matteo ; Deodato, Federica ; Dionisi‐Vici, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-a514343ca6490df1a031ae0dae9ef0fbd3ef63311041e2cdc212b4fe6fe062df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Antioxidants</topic><topic>Aryldialkylphosphatase - metabolism</topic><topic>Autophagy</topic><topic>Autophagy - physiology</topic><topic>Calcium homeostasis</topic><topic>Cell adhesion</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Chromatography, Liquid</topic><topic>Female</topic><topic>Glycogen</topic><topic>Glycogen Storage Disease Type II - metabolism</topic><topic>Glycolysis</topic><topic>GPLD1</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Infant</topic><topic>Inflammation</topic><topic>Lactate Dehydrogenases - metabolism</topic><topic>Lipid Metabolism</topic><topic>Lipidomics - methods</topic><topic>Lysosomes</topic><topic>Lysosomes - metabolism</topic><topic>Male</topic><topic>Metabolism</topic><topic>Myopathy</topic><topic>Phagocytosis</topic><topic>phosphatidylcholine metabolism</topic><topic>Phospholipids</topic><topic>Phospholipids - metabolism</topic><topic>plasma lipidome</topic><topic>plasma proteome</topic><topic>Pompe disease</topic><topic>Proteomics - methods</topic><topic>Respiratory failure</topic><topic>Tandem Mass Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidorina, Anna</creatorcontrib><creatorcontrib>Catesini, Giulio</creatorcontrib><creatorcontrib>Levi Mortera, Stefano</creatorcontrib><creatorcontrib>Marzano, Valeria</creatorcontrib><creatorcontrib>Putignani, Lorenza</creatorcontrib><creatorcontrib>Boenzi, Sara</creatorcontrib><creatorcontrib>Taurisano, Roberta</creatorcontrib><creatorcontrib>Garibaldi, Matteo</creatorcontrib><creatorcontrib>Deodato, Federica</creatorcontrib><creatorcontrib>Dionisi‐Vici, Carlo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of inherited metabolic disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidorina, Anna</au><au>Catesini, Giulio</au><au>Levi Mortera, Stefano</au><au>Marzano, Valeria</au><au>Putignani, Lorenza</au><au>Boenzi, Sara</au><au>Taurisano, Roberta</au><au>Garibaldi, Matteo</au><au>Deodato, Federica</au><au>Dionisi‐Vici, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined proteomic and lipidomic studies in Pompe disease allow a better disease mechanism understanding</atitle><jtitle>Journal of inherited metabolic disease</jtitle><addtitle>J Inherit Metab Dis</addtitle><date>2021-05</date><risdate>2021</risdate><volume>44</volume><issue>3</issue><spage>705</spage><epage>717</epage><pages>705-717</pages><issn>0141-8955</issn><eissn>1573-2665</eissn><abstract>Pompe disease (PD) is caused by deficiency of the enzyme acid α‐glucosidase resulting in glycogen accumulation in lysosomes. Clinical symptoms include skeletal myopathy, respiratory failure, and cardiac hypertrophy. We studied plasma proteomic and lipidomic profiles in 12 PD patients compared to age‐matched controls. The proteomic profiles were analyzed by nLC‐MS/MS SWATH method. Wide‐targeted lipidomic analysis was performed by LC‐IMS/MS, allowing to quantify &gt;1100 lipid species, spanning 13 classes. Significant differences were found for 16 proteins, with four showing the most relevant changes (GPLD1, PON1, LDHB, PKM). Lipidomic analysis showed elevated levels of three phosphatidylcholines and of the free fatty acid 22:4, and reduced levels of six lysophosphatidylcholines. Up‐regulated glycolytic enzymes (LDHB and PKM) are involved in autophagy and glycogen metabolism, while down‐regulated PON1 and GPLD1 combined with lipidomic data indicate an abnormal phospholipid metabolism. Reduced GPLD1 and dysregulation of lipids with acyl‐chains characteristic of GPI‐anchor structure suggest the potential involvement of GPI‐anchor system in PD. Results of proteomic analysis displayed the involvement of multiple cellular functions affecting inflammatory, immune and antioxidant responses, autophagy, Ca2+‐homeostasis, and cell adhesion. The combined multi‐omic approach revealed new biosignatures in PD, providing novel insights in disease pathophysiology with potential future clinical application.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33325062</pmid><doi>10.1002/jimd.12344</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0358-7524</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-8955
ispartof Journal of inherited metabolic disease, 2021-05, Vol.44 (3), p.705-717
issn 0141-8955
1573-2665
language eng
recordid cdi_proquest_miscellaneous_2470625797
source MEDLINE; Wiley Online Library All Journals
subjects Adult
Antioxidants
Aryldialkylphosphatase - metabolism
Autophagy
Autophagy - physiology
Calcium homeostasis
Cell adhesion
Child
Child, Preschool
Chromatography, Liquid
Female
Glycogen
Glycogen Storage Disease Type II - metabolism
Glycolysis
GPLD1
Homeostasis
Humans
Hypertrophy
Infant
Inflammation
Lactate Dehydrogenases - metabolism
Lipid Metabolism
Lipidomics - methods
Lysosomes
Lysosomes - metabolism
Male
Metabolism
Myopathy
Phagocytosis
phosphatidylcholine metabolism
Phospholipids
Phospholipids - metabolism
plasma lipidome
plasma proteome
Pompe disease
Proteomics - methods
Respiratory failure
Tandem Mass Spectrometry
title Combined proteomic and lipidomic studies in Pompe disease allow a better disease mechanism understanding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20proteomic%20and%20lipidomic%20studies%20in%20Pompe%20disease%20allow%20a%20better%20disease%20mechanism%20understanding&rft.jtitle=Journal%20of%20inherited%20metabolic%20disease&rft.au=Sidorina,%20Anna&rft.date=2021-05&rft.volume=44&rft.issue=3&rft.spage=705&rft.epage=717&rft.pages=705-717&rft.issn=0141-8955&rft.eissn=1573-2665&rft_id=info:doi/10.1002/jimd.12344&rft_dat=%3Cproquest_cross%3E2524091073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524091073&rft_id=info:pmid/33325062&rfr_iscdi=true