Combined proteomic and lipidomic studies in Pompe disease allow a better disease mechanism understanding
Pompe disease (PD) is caused by deficiency of the enzyme acid α‐glucosidase resulting in glycogen accumulation in lysosomes. Clinical symptoms include skeletal myopathy, respiratory failure, and cardiac hypertrophy. We studied plasma proteomic and lipidomic profiles in 12 PD patients compared to age...
Gespeichert in:
Veröffentlicht in: | Journal of inherited metabolic disease 2021-05, Vol.44 (3), p.705-717 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 717 |
---|---|
container_issue | 3 |
container_start_page | 705 |
container_title | Journal of inherited metabolic disease |
container_volume | 44 |
creator | Sidorina, Anna Catesini, Giulio Levi Mortera, Stefano Marzano, Valeria Putignani, Lorenza Boenzi, Sara Taurisano, Roberta Garibaldi, Matteo Deodato, Federica Dionisi‐Vici, Carlo |
description | Pompe disease (PD) is caused by deficiency of the enzyme acid α‐glucosidase resulting in glycogen accumulation in lysosomes. Clinical symptoms include skeletal myopathy, respiratory failure, and cardiac hypertrophy. We studied plasma proteomic and lipidomic profiles in 12 PD patients compared to age‐matched controls. The proteomic profiles were analyzed by nLC‐MS/MS SWATH method. Wide‐targeted lipidomic analysis was performed by LC‐IMS/MS, allowing to quantify >1100 lipid species, spanning 13 classes. Significant differences were found for 16 proteins, with four showing the most relevant changes (GPLD1, PON1, LDHB, PKM). Lipidomic analysis showed elevated levels of three phosphatidylcholines and of the free fatty acid 22:4, and reduced levels of six lysophosphatidylcholines. Up‐regulated glycolytic enzymes (LDHB and PKM) are involved in autophagy and glycogen metabolism, while down‐regulated PON1 and GPLD1 combined with lipidomic data indicate an abnormal phospholipid metabolism. Reduced GPLD1 and dysregulation of lipids with acyl‐chains characteristic of GPI‐anchor structure suggest the potential involvement of GPI‐anchor system in PD. Results of proteomic analysis displayed the involvement of multiple cellular functions affecting inflammatory, immune and antioxidant responses, autophagy, Ca2+‐homeostasis, and cell adhesion. The combined multi‐omic approach revealed new biosignatures in PD, providing novel insights in disease pathophysiology with potential future clinical application. |
doi_str_mv | 10.1002/jimd.12344 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2470625797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524091073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-a514343ca6490df1a031ae0dae9ef0fbd3ef63311041e2cdc212b4fe6fe062df3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl42PoAE3IhQzbW1SxnvKLrQdUibE83QNGPTMszbG6ejCxeuDufw8XH-H6FDSs4oIex85rw5o4wLsYEmVBY8Y3kuN9GEUEGzi1LKHbQb44wQUl5IuY12OOdMkpxN0Mc0-Mq1YPC8Cz0E72qsW4MbN3dmtcV-MA4idi1-CX4O2LgIOgLWTRMWWOMK-h6637OH-kO3Lno8tAa62Ceda9_30ZbVTYSD9dxDbzfXr9O77PH59n56-ZjVXBYi05IKLnitc1ESY6kmnGogRkMJltjKcLA555QSQYHVpmaUVcJCbiHlMZbvoZPRm_J8DhB75V2soWl0C2GIiokigbIoi4Qe_0FnYeja9J1ikglSUlLwRJ2OVN2FGDuwat45r7ulokR996---1er_hN8tFYOlQfzi_4UngA6AgvXwPIflXq4f7oapV-I3ZEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524091073</pqid></control><display><type>article</type><title>Combined proteomic and lipidomic studies in Pompe disease allow a better disease mechanism understanding</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Sidorina, Anna ; Catesini, Giulio ; Levi Mortera, Stefano ; Marzano, Valeria ; Putignani, Lorenza ; Boenzi, Sara ; Taurisano, Roberta ; Garibaldi, Matteo ; Deodato, Federica ; Dionisi‐Vici, Carlo</creator><creatorcontrib>Sidorina, Anna ; Catesini, Giulio ; Levi Mortera, Stefano ; Marzano, Valeria ; Putignani, Lorenza ; Boenzi, Sara ; Taurisano, Roberta ; Garibaldi, Matteo ; Deodato, Federica ; Dionisi‐Vici, Carlo</creatorcontrib><description>Pompe disease (PD) is caused by deficiency of the enzyme acid α‐glucosidase resulting in glycogen accumulation in lysosomes. Clinical symptoms include skeletal myopathy, respiratory failure, and cardiac hypertrophy. We studied plasma proteomic and lipidomic profiles in 12 PD patients compared to age‐matched controls. The proteomic profiles were analyzed by nLC‐MS/MS SWATH method. Wide‐targeted lipidomic analysis was performed by LC‐IMS/MS, allowing to quantify >1100 lipid species, spanning 13 classes. Significant differences were found for 16 proteins, with four showing the most relevant changes (GPLD1, PON1, LDHB, PKM). Lipidomic analysis showed elevated levels of three phosphatidylcholines and of the free fatty acid 22:4, and reduced levels of six lysophosphatidylcholines. Up‐regulated glycolytic enzymes (LDHB and PKM) are involved in autophagy and glycogen metabolism, while down‐regulated PON1 and GPLD1 combined with lipidomic data indicate an abnormal phospholipid metabolism. Reduced GPLD1 and dysregulation of lipids with acyl‐chains characteristic of GPI‐anchor structure suggest the potential involvement of GPI‐anchor system in PD. Results of proteomic analysis displayed the involvement of multiple cellular functions affecting inflammatory, immune and antioxidant responses, autophagy, Ca2+‐homeostasis, and cell adhesion. The combined multi‐omic approach revealed new biosignatures in PD, providing novel insights in disease pathophysiology with potential future clinical application.</description><identifier>ISSN: 0141-8955</identifier><identifier>EISSN: 1573-2665</identifier><identifier>DOI: 10.1002/jimd.12344</identifier><identifier>PMID: 33325062</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adult ; Antioxidants ; Aryldialkylphosphatase - metabolism ; Autophagy ; Autophagy - physiology ; Calcium homeostasis ; Cell adhesion ; Child ; Child, Preschool ; Chromatography, Liquid ; Female ; Glycogen ; Glycogen Storage Disease Type II - metabolism ; Glycolysis ; GPLD1 ; Homeostasis ; Humans ; Hypertrophy ; Infant ; Inflammation ; Lactate Dehydrogenases - metabolism ; Lipid Metabolism ; Lipidomics - methods ; Lysosomes ; Lysosomes - metabolism ; Male ; Metabolism ; Myopathy ; Phagocytosis ; phosphatidylcholine metabolism ; Phospholipids ; Phospholipids - metabolism ; plasma lipidome ; plasma proteome ; Pompe disease ; Proteomics - methods ; Respiratory failure ; Tandem Mass Spectrometry</subject><ispartof>Journal of inherited metabolic disease, 2021-05, Vol.44 (3), p.705-717</ispartof><rights>2020 SSIEM</rights><rights>2020 SSIEM.</rights><rights>Copyright © 2021 SSIEM</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-a514343ca6490df1a031ae0dae9ef0fbd3ef63311041e2cdc212b4fe6fe062df3</citedby><cites>FETCH-LOGICAL-c3574-a514343ca6490df1a031ae0dae9ef0fbd3ef63311041e2cdc212b4fe6fe062df3</cites><orcidid>0000-0003-0358-7524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjimd.12344$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjimd.12344$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33325062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sidorina, Anna</creatorcontrib><creatorcontrib>Catesini, Giulio</creatorcontrib><creatorcontrib>Levi Mortera, Stefano</creatorcontrib><creatorcontrib>Marzano, Valeria</creatorcontrib><creatorcontrib>Putignani, Lorenza</creatorcontrib><creatorcontrib>Boenzi, Sara</creatorcontrib><creatorcontrib>Taurisano, Roberta</creatorcontrib><creatorcontrib>Garibaldi, Matteo</creatorcontrib><creatorcontrib>Deodato, Federica</creatorcontrib><creatorcontrib>Dionisi‐Vici, Carlo</creatorcontrib><title>Combined proteomic and lipidomic studies in Pompe disease allow a better disease mechanism understanding</title><title>Journal of inherited metabolic disease</title><addtitle>J Inherit Metab Dis</addtitle><description>Pompe disease (PD) is caused by deficiency of the enzyme acid α‐glucosidase resulting in glycogen accumulation in lysosomes. Clinical symptoms include skeletal myopathy, respiratory failure, and cardiac hypertrophy. We studied plasma proteomic and lipidomic profiles in 12 PD patients compared to age‐matched controls. The proteomic profiles were analyzed by nLC‐MS/MS SWATH method. Wide‐targeted lipidomic analysis was performed by LC‐IMS/MS, allowing to quantify >1100 lipid species, spanning 13 classes. Significant differences were found for 16 proteins, with four showing the most relevant changes (GPLD1, PON1, LDHB, PKM). Lipidomic analysis showed elevated levels of three phosphatidylcholines and of the free fatty acid 22:4, and reduced levels of six lysophosphatidylcholines. Up‐regulated glycolytic enzymes (LDHB and PKM) are involved in autophagy and glycogen metabolism, while down‐regulated PON1 and GPLD1 combined with lipidomic data indicate an abnormal phospholipid metabolism. Reduced GPLD1 and dysregulation of lipids with acyl‐chains characteristic of GPI‐anchor structure suggest the potential involvement of GPI‐anchor system in PD. Results of proteomic analysis displayed the involvement of multiple cellular functions affecting inflammatory, immune and antioxidant responses, autophagy, Ca2+‐homeostasis, and cell adhesion. The combined multi‐omic approach revealed new biosignatures in PD, providing novel insights in disease pathophysiology with potential future clinical application.</description><subject>Adult</subject><subject>Antioxidants</subject><subject>Aryldialkylphosphatase - metabolism</subject><subject>Autophagy</subject><subject>Autophagy - physiology</subject><subject>Calcium homeostasis</subject><subject>Cell adhesion</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Chromatography, Liquid</subject><subject>Female</subject><subject>Glycogen</subject><subject>Glycogen Storage Disease Type II - metabolism</subject><subject>Glycolysis</subject><subject>GPLD1</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hypertrophy</subject><subject>Infant</subject><subject>Inflammation</subject><subject>Lactate Dehydrogenases - metabolism</subject><subject>Lipid Metabolism</subject><subject>Lipidomics - methods</subject><subject>Lysosomes</subject><subject>Lysosomes - metabolism</subject><subject>Male</subject><subject>Metabolism</subject><subject>Myopathy</subject><subject>Phagocytosis</subject><subject>phosphatidylcholine metabolism</subject><subject>Phospholipids</subject><subject>Phospholipids - metabolism</subject><subject>plasma lipidome</subject><subject>plasma proteome</subject><subject>Pompe disease</subject><subject>Proteomics - methods</subject><subject>Respiratory failure</subject><subject>Tandem Mass Spectrometry</subject><issn>0141-8955</issn><issn>1573-2665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMoOl42PoAE3IhQzbW1SxnvKLrQdUibE83QNGPTMszbG6ejCxeuDufw8XH-H6FDSs4oIex85rw5o4wLsYEmVBY8Y3kuN9GEUEGzi1LKHbQb44wQUl5IuY12OOdMkpxN0Mc0-Mq1YPC8Cz0E72qsW4MbN3dmtcV-MA4idi1-CX4O2LgIOgLWTRMWWOMK-h6637OH-kO3Lno8tAa62Ceda9_30ZbVTYSD9dxDbzfXr9O77PH59n56-ZjVXBYi05IKLnitc1ESY6kmnGogRkMJltjKcLA555QSQYHVpmaUVcJCbiHlMZbvoZPRm_J8DhB75V2soWl0C2GIiokigbIoi4Qe_0FnYeja9J1ikglSUlLwRJ2OVN2FGDuwat45r7ulokR996---1er_hN8tFYOlQfzi_4UngA6AgvXwPIflXq4f7oapV-I3ZEQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Sidorina, Anna</creator><creator>Catesini, Giulio</creator><creator>Levi Mortera, Stefano</creator><creator>Marzano, Valeria</creator><creator>Putignani, Lorenza</creator><creator>Boenzi, Sara</creator><creator>Taurisano, Roberta</creator><creator>Garibaldi, Matteo</creator><creator>Deodato, Federica</creator><creator>Dionisi‐Vici, Carlo</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0358-7524</orcidid></search><sort><creationdate>202105</creationdate><title>Combined proteomic and lipidomic studies in Pompe disease allow a better disease mechanism understanding</title><author>Sidorina, Anna ; Catesini, Giulio ; Levi Mortera, Stefano ; Marzano, Valeria ; Putignani, Lorenza ; Boenzi, Sara ; Taurisano, Roberta ; Garibaldi, Matteo ; Deodato, Federica ; Dionisi‐Vici, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-a514343ca6490df1a031ae0dae9ef0fbd3ef63311041e2cdc212b4fe6fe062df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Antioxidants</topic><topic>Aryldialkylphosphatase - metabolism</topic><topic>Autophagy</topic><topic>Autophagy - physiology</topic><topic>Calcium homeostasis</topic><topic>Cell adhesion</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Chromatography, Liquid</topic><topic>Female</topic><topic>Glycogen</topic><topic>Glycogen Storage Disease Type II - metabolism</topic><topic>Glycolysis</topic><topic>GPLD1</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hypertrophy</topic><topic>Infant</topic><topic>Inflammation</topic><topic>Lactate Dehydrogenases - metabolism</topic><topic>Lipid Metabolism</topic><topic>Lipidomics - methods</topic><topic>Lysosomes</topic><topic>Lysosomes - metabolism</topic><topic>Male</topic><topic>Metabolism</topic><topic>Myopathy</topic><topic>Phagocytosis</topic><topic>phosphatidylcholine metabolism</topic><topic>Phospholipids</topic><topic>Phospholipids - metabolism</topic><topic>plasma lipidome</topic><topic>plasma proteome</topic><topic>Pompe disease</topic><topic>Proteomics - methods</topic><topic>Respiratory failure</topic><topic>Tandem Mass Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidorina, Anna</creatorcontrib><creatorcontrib>Catesini, Giulio</creatorcontrib><creatorcontrib>Levi Mortera, Stefano</creatorcontrib><creatorcontrib>Marzano, Valeria</creatorcontrib><creatorcontrib>Putignani, Lorenza</creatorcontrib><creatorcontrib>Boenzi, Sara</creatorcontrib><creatorcontrib>Taurisano, Roberta</creatorcontrib><creatorcontrib>Garibaldi, Matteo</creatorcontrib><creatorcontrib>Deodato, Federica</creatorcontrib><creatorcontrib>Dionisi‐Vici, Carlo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of inherited metabolic disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidorina, Anna</au><au>Catesini, Giulio</au><au>Levi Mortera, Stefano</au><au>Marzano, Valeria</au><au>Putignani, Lorenza</au><au>Boenzi, Sara</au><au>Taurisano, Roberta</au><au>Garibaldi, Matteo</au><au>Deodato, Federica</au><au>Dionisi‐Vici, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined proteomic and lipidomic studies in Pompe disease allow a better disease mechanism understanding</atitle><jtitle>Journal of inherited metabolic disease</jtitle><addtitle>J Inherit Metab Dis</addtitle><date>2021-05</date><risdate>2021</risdate><volume>44</volume><issue>3</issue><spage>705</spage><epage>717</epage><pages>705-717</pages><issn>0141-8955</issn><eissn>1573-2665</eissn><abstract>Pompe disease (PD) is caused by deficiency of the enzyme acid α‐glucosidase resulting in glycogen accumulation in lysosomes. Clinical symptoms include skeletal myopathy, respiratory failure, and cardiac hypertrophy. We studied plasma proteomic and lipidomic profiles in 12 PD patients compared to age‐matched controls. The proteomic profiles were analyzed by nLC‐MS/MS SWATH method. Wide‐targeted lipidomic analysis was performed by LC‐IMS/MS, allowing to quantify >1100 lipid species, spanning 13 classes. Significant differences were found for 16 proteins, with four showing the most relevant changes (GPLD1, PON1, LDHB, PKM). Lipidomic analysis showed elevated levels of three phosphatidylcholines and of the free fatty acid 22:4, and reduced levels of six lysophosphatidylcholines. Up‐regulated glycolytic enzymes (LDHB and PKM) are involved in autophagy and glycogen metabolism, while down‐regulated PON1 and GPLD1 combined with lipidomic data indicate an abnormal phospholipid metabolism. Reduced GPLD1 and dysregulation of lipids with acyl‐chains characteristic of GPI‐anchor structure suggest the potential involvement of GPI‐anchor system in PD. Results of proteomic analysis displayed the involvement of multiple cellular functions affecting inflammatory, immune and antioxidant responses, autophagy, Ca2+‐homeostasis, and cell adhesion. The combined multi‐omic approach revealed new biosignatures in PD, providing novel insights in disease pathophysiology with potential future clinical application.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>33325062</pmid><doi>10.1002/jimd.12344</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0358-7524</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8955 |
ispartof | Journal of inherited metabolic disease, 2021-05, Vol.44 (3), p.705-717 |
issn | 0141-8955 1573-2665 |
language | eng |
recordid | cdi_proquest_miscellaneous_2470625797 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Adult Antioxidants Aryldialkylphosphatase - metabolism Autophagy Autophagy - physiology Calcium homeostasis Cell adhesion Child Child, Preschool Chromatography, Liquid Female Glycogen Glycogen Storage Disease Type II - metabolism Glycolysis GPLD1 Homeostasis Humans Hypertrophy Infant Inflammation Lactate Dehydrogenases - metabolism Lipid Metabolism Lipidomics - methods Lysosomes Lysosomes - metabolism Male Metabolism Myopathy Phagocytosis phosphatidylcholine metabolism Phospholipids Phospholipids - metabolism plasma lipidome plasma proteome Pompe disease Proteomics - methods Respiratory failure Tandem Mass Spectrometry |
title | Combined proteomic and lipidomic studies in Pompe disease allow a better disease mechanism understanding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20proteomic%20and%20lipidomic%20studies%20in%20Pompe%20disease%20allow%20a%20better%20disease%20mechanism%20understanding&rft.jtitle=Journal%20of%20inherited%20metabolic%20disease&rft.au=Sidorina,%20Anna&rft.date=2021-05&rft.volume=44&rft.issue=3&rft.spage=705&rft.epage=717&rft.pages=705-717&rft.issn=0141-8955&rft.eissn=1573-2665&rft_id=info:doi/10.1002/jimd.12344&rft_dat=%3Cproquest_cross%3E2524091073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524091073&rft_id=info:pmid/33325062&rfr_iscdi=true |